Quasi ZSI-Fed Sliding Mode Control-based Indirect Field-Oriented Control of IM Using PI-Fuzzy Logic Speed Controller

Quasi ZSI-Fed Sliding Mode Control-based Indirect Field-Oriented Control of IM Using PI-Fuzzy Logic Speed Controller

The demand for very efficient and top-performing power converters and drives is rising, which requires a new controlling strategy for the drive system. The induction motor (IM) and quasi-ZSI (q-ZSI) have elicited increasing interest in electric vehicle (EV) applications due to their unique features and benefits. However, it requires a perfect controlling scheme to reduce torque ripple and achieve a fast and dynamic IM response. The study in this paper has been carried out on a q-ZSI (impedance source inverter)-supplied IM drive. The PI controller, together with a fuzzy logic controller (FLC), is used as a speed regulator. The FLC with speed regulation reduces the torque ripple and SMC chattering of the IM. The sliding mode controller (SMC) replaces the two current PI controllers of indirect field-oriented control (IFOC). The proposed hybrid control strategy FLC–SMC–IFOC is implemented for the IM drive. The control system is implemented on the MATLAB/Simulink software and the results are compared with the conventional IFOC control. The proposed system results in improved dynamic response, minimized torque ripple, and fast convergence.

___

  • 1. F. Z. Peng, “Z-source inverter,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 504–510, 2003. [CrossRef]
  • 2. F. Z. Peng et al., “Z-source inverter for motor drives,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 857–863, 2005. [CrossRef]
  • 3. F. Z. Peng, M. Shen, and K. Holland, “Application of Z-source inverter for traction drive of fuel cell—Battery hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1054–1061, 2007. [CrossRef]
  • 4. W. P. Q. Tong, B. M. S. M. Ramadan, and T. Logenthiran, “A comparative analysis between Z-source and quasi-Z-source inverters for boost operation,” in Asian Conf. Energy Power Transp. Electrification (ACEPT), 2018, pp. 1–6. [CrossRef]
  • 5. T. Maity and H. Prasad, “Real-time performance evaluation of quasi Z-source inverter for induction motor drives,” in 26th Int. Symp. Ind. Electron. (ISIE), 2017, pp. 844–849. [CrossRef]
  • 6. Y. P. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh, and G. E. Town, “Impedance-source networks for electric Power conversion Part I: A topological review,” in IEEE Trans. Power Electron., vol. 30, no. 2, pp. 699–716, Feb. 2015. [CrossRef].
  • 7. K. Beer and B. Piepenbreier, “Properties and advantages of the quasi-Zsource inverter for DC-AC conversion for electric vehicle applications,” in Emobility – Electr. Power Train, 2010, pp. 1–6. [CrossRef]
  • 8. S. Rahman, K. Rahman, M. A. Ali, M. Meraj, and A. Iqbal, “Quasi Z source inverter fed V/f controlled five phase induction motor drive powered,” in Int. Conf. Electr. Electron. Comput. Eng. (UPCON), 2019, pp. 1–6. [CrossRef]
  • 9. S. T. Telrandhe, S. S. Pande, and S. V. Umredkar, “Performance analysis of solar fed electronically commutated motor driven water pump using ZSI and q-ZSI,” in 3rd Int. Conf. Comput. Methodol. Commun. (ICCMC), 2019, pp. 157–161. [CrossRef]
  • 10. M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756–1764, 2006. [CrossRef]
  • 11. M. Muhammad, Z. Rasin, and A. Jidin, “Bidirectional quasi-Z-source inverter with hybrid energy storage for IM drive system,” in 9th Symp. Comput. Appl. Ind. Electron. (ISCAIE), 2019, pp. 75–80. [CrossRef]
  • 12. M. Farasat, A. M. Trzynadlowski, and M. S. Fadali, “Efficiency improved sensorless control scheme for electric vehicle induction motors,” IET Electr. Syst. Transp., vol. 4, no. 4, pp. 122–131, 2014.
  • 13. T. Wang, P. Zheng, Q. Zhang, and S. Cheng, “Design characteristics of the induction motor used for hybrid electric vehicle,” IEEE Trans. Magn., vol. 41, no. 1, pp. 505–508, 2005. [CrossRef]
  • 14. N. El Ouanjli et al., “Modern improvement techniques of direct torque control for induction motor drives: A review,” Prot. Control Mod. Power Syst., vol. 4, no. 1, p. 11, 2019. [CrossRef]
  • 15. C. P. Gor, V. A. Shah, and M. P. Gor, “Electric vehicle drive selection related issues,” in Int. Conf. Signal Process. Commun. Power Embed. Syst. (SCOPES), 2016, pp. 74–79. [CrossRef]
  • 16. M. Popescu, J. Goss, D. A. Staton, D. Hawkins, Y. C. Chong, and A. Boglietti, “Electrical vehicles—Practical solutions for power traction motor systems,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2751–2762, 2018. [CrossRef]
  • 17. X. Zhang, “Sensorless induction motor drive using indirect vector controller and sliding-mode observer for electric vehicles,” IEEE Trans. Veh. Technol., vol. 62, no. 7, pp. 3010–3018, 2013. [CrossRef]
  • 18. A. Hazzab, I. K. Bousserhane, and M. Kamli, “Design of a fuzzy sliding mode controller by genetic algorithms for induction machine speed control,” Int. J. Emerg. Electr. Power Syst., vol. 1, no. 2, 2004.
  • 19. A. Saghafinia, H. W. Ping, M. N. Uddin, and K. S. Gaeid, “Adaptive fuzzy sliding-mode control into chattering-free IM drive,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 692–701, 2015. [CrossRef]
  • 20. A. Ghezouani, B. Gasbaoui, and J. Ghouili, “Modeling and sliding mode DTC of an EV with four in-wheel induction motors drive,” in Int. Conf. Electr. Sci. Tech. Maghreb (CISTEM), 2018, pp. 1–9. [CrossRef]
  • 21. N. Abdelfatah, H. Abdeldjebar, I. Bousserhane, S. Hadjeri, and P. Sicard, “Two wheel speed robust sliding mode control for electric vehicle drive,” Serb. J. Electr. Eng., vol. 5, no. 2, pp. 199–216, 2008. [CrossRef]
  • 22. A. Ghezoua, B. Gasbaoui, and J. Ghouili, “Sliding mode control for four wheels electric vehicle drive,” in 9th Int. Conf. Interdiscipl. Eng., 2015. [CrossRef]
  • 23. R. Solea, M. Gaiceanu, and V. Nicolau, “Sliding mode controller for induction motor,” in 4th Int. Symp. Electr. Electron. Eng. (ISEEE), 2013, pp. 1–5. [CrossRef]
  • 24. A. Ltifi, M. Ghariani, and R. Neji, “Performance comparison of PI, SMC and PI-sliding mode controller for EV,” in 15th Int. Conf. Sci. Tech. Auto. Control Comput. Eng. (STA), 2014, pp. 291–297. [CrossRef]
  • 25. I. Sami, S. Ullah, A. Basit, N. Ullah, and J. -S. Ro, “Integral super twisting sliding mode based sensorless predictive torque control of induction motor,” IEEE Access, vol. 8, pp. 186740–186755, 2020. [CrossRef]
  • 26. N. Goel, R. N. Patel, and S. Chacko, “Torque ripple reduction of the DTC IM drive using artificial intelligence,” in Int. Conf. Electr. Power Ener. Syst. (ICEPES), 2016, pp. 5–9. [CrossRef]
  • 27. H. Mediouni, S. El Hani, M. Ouadghiri, I. Aboudrar, and I. Ouachtouk, “Artificial intelligence techniques for induction motor drives,” in IEEE Int. Electr. Mach. Drives Conf. (IEMDC), 2017, pp. 1–6. [CrossRef]
  • 28. M. Aktas, K. Awaili, M. Ehsani, and A. Arisoy, “Direct torque control versus indirect field-oriented control of induction motors for electric vehicle applications,” Eng. Sci. Technol. An Int. J., vol. 23, no. 5, 1134–1143, 2020.
  • 29. T. Ramesh and A. K. Panda, “Direct flux and torque control of three phase induction motor drive using PI and fuzzy logic controllers for speed regulator and low torque ripple,” in Stud. Conf. Eng. Syst., 2012, pp. 1–6. [CrossRef]
  • 30. V. R. Metha and S. S. Karvekar, “Speed control of induction motor using a fuzzy logic controller and direct torque controller,” in 4th Int. Conf. Converg. Tech. (I2CT), 2018, pp. 1–5. [CrossRef]
  • 31. N. V. Uma Maheswari and L. J. Sahaya Shanthi, “Performance improvement of sensorless induction motor drive with fuzzy logic controller,” in 2nd Int. Conf. Intel. Comput. Control Syst. (ICICCS), 2018, pp. 591–596. [CrossRef]
  • 32. V. S. Virkar and S. S. Karvekar, “Luenberger observer-based sensorless speed control of induction motor with Fuzzy tuned PID controller,” in Int. Conf. Commun. Electr. Syst. (ICCES), 2019, pp. 503–508. [CrossRef]
  • 33. A. Bitoleanu, C. V. Suru, and M. Linca, “Fuzzy speed control in drive systems with voltage inverters and induction motors,” in 6th Int. Symp. Electr. Electron. Eng. (ISEEE), 2019, pp. 1–6. [CrossRef]
  • 34. G. Joshi and A. J. Pinto Pius, “Type-1 Mamdani fuzzy logic controller for electric vehicle drive,” in Int. Conf. Smart Syst. Invent. Tech. (ICSSIT), 2019, pp. 224–229. [CrossRef]
  • 35. S. Ali, S. A. R. Kashif, H. Q. Ali, and K. Toqueer, “Direct torque control of inverter fed three phase induction motor by implementing fuzzy logic controller,” in 6th Int. Conf. Eng. Tech. Appl. Sci. (ICETAS), 2019, pp. 1–8. [CrossRef]
  • 36. D. Fereka, M. Zerikat, and A. Belaidi, “MRAS sensorless speed control of an induction motor drive based on fuzzy sliding mode control,” in 7th Int. Conf. Syst. Control (ICSC), 2018, pp. 230–236. [CrossRef]
  • 37. C. S. T. Dong, C. D. Tran, S. D. Ho, P. Brandstetter, and M. Kuchar, “Robust sliding mode observer application in vector control of induction motor,” in ELEKTRO, 2018, pp. 1–5. [CrossRef]
  • 38. O. Ellabban and H. Abu-Rub, “Indirect field oriented control of an induction motor fed by a bidirectional quasi Z-source inverter,” IECON 2012 - 38th Ann. Conf. IEEE Ind. Electron. Soc., 2012, pp. 5297–5302. [CrossRef]
  • 39. D. Zechmair, and K. Steidl, “Why the induction motor could be the better choice for your electric vehicle program,” World Electr. Veh. J., vol. 5, no. 2, pp. 546–549, 2012. [CrossRef]
  • 40. B. K. Bose, Modern Power Electronics and AC Drives. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2002, vol. 8, ch. 2. ISBN 0-13-016743-6.
  • 41. M. H. Rashid, Power Electronics Handbook. Oxford, U.K.: ButterworthHeinemann, 2001, ch. 33. ISBN 13: 978-0-12-088479-7. ISBN 10: 0-12-088479-8.
  • 42. P. C. Krause, Analysis of Electrical Machinery and Drive Systems. Hoboken, NJ, USA: Wiley, 2013, ch. 4. ISBN: 978-1-118-02429-4.
Electrica-Cover
  • ISSN: 2619-9831
  • Başlangıç: 2001
  • Yayıncı: İstanbul Üniversitesi-Cerrahpaşa
Sayıdaki Diğer Makaleler

Estimation of Induction Motor Equivalent Circuit Parameters from Manufacturer’s Datasheet by Particle Swarm Optimization Algorithm for Variable Frequency Drives

Mehmet Onur GÜLBAHÇE, Muhammed Emin KARAASLAN

Design and Analysis of Printed Monopole Antenna With and Without CSRR in the Ground Plane for GSM 900 and Wi-Fi

Prasanna G. PAGA, H. C. NAGARAJ, K. S. SHASHİDHARA, Veerendra DAKULAGI, Kim Ho YEAP

Minimized Total Harmonic Distortion of a Multi-level Inverter of a Wind Power Conversion Chain Synchronized to the Grid-LCL Filter Optimization and Third Harmonic Cancellation

Wijdane El MAATAOUİ, Mustapha MABROUKİ, Soukaina El DAOUDİ, Loubna LAZRAK

Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions

Emrah DOKUR, Salim CEYHAN, Mehmet KURBAN

Robust Position Control of a Levitating Ball via a Backstepping Controller

Türker TÜRKER, Fatih ADIGÜZEL

Ultra-Wide-Band Microstrip Patch Antenna Design for Breast Cancer Detection

Adel ALOMAİRİ, Doğu Çağdaş ATİLLA

Additional Pulses in the Time Response of a Modal Filter on a Double-Sided Printed Circuit Board

Maria A. SAMOYLİCHENKO, Talgat R. GAZİZOV

Current Reconstruction for PMSM Drives Using a DC-Link Single Current Sensor

Mustafa AKTAŞ, Barış ÇAVUŞ

Quasi ZSI-Fed Sliding Mode Control-based Indirect Field-Oriented Control of IM Using PI-Fuzzy Logic Speed Controller

Rekha TİDKE, Anandita CHOWDHURY

Using a Turn of a Meander Microstrip Line for ESD Protection

Talgat R. GAZİZOV, Alexander V. NOSOV, Roman S. SUROVTSEV