Modeling and Analysis of Positive Output Luo Converter in Voltage Control Mode

This paper presents the modeling, controller design, and stability analysis for positive output LUO converter (POLC) in voltage control mode. The POLCuses elementary voltage lift technique to regulate the output voltage from a variable input voltage. In modeling of POLC, the transfer functions forcontrol input to output and disturbance input to output are derived using linearized state-space averaging technique. The developed transfer functionof POLC is analyzed for various duty cycles and circuit parameters. To improve the dynamic performance of POLC, the integral lead controller and theintegral lag-lead controller are designed. This paper also presents the maximum time delay computation of POLC without losing small signal stability.Rekasius’s substitution was used to analyze the stability with time delay. The performance of both the controllers was analyzed for various input voltages,reference voltages, and loads in MATLAB Simulink environment. The integral lag-lead controller provided an improved transient response and betterstability. To validate the performance of the controllers, prototype experimental setup was implemented. The performance of the integral lag-leadcontroller was better despite the time delay caused by feedback element.

___

1. S. A. Amirtharaj, L. Premalatha, “Design of an Efficient Positive Output Self-Lift and Negative Output Self-Lift Luo Converters using Drift Free Technique for Photovoltaic Applications”, Energy Procedia, vol. 117, pp. 651-657, Jun 2017. [Crossref]

2. K. Sundareswaran, V. Vigneshkumar, P. Sankar, S. P. Simon, P. S. Rao Nayak, S. Palani, “Development of an Improved P&O Algorithm Assisted through a Colony of Foraging Ants for MPPT in PV System”, IEEE Trans. Industrial Inform., vol. 12, no. 1, pp. 187-200, 2016. [Crossref]

3. Z. Shan, S Liu, F. Luo, “Investigation of a Super-Lift Luo-Converter used in solar panel system”, IEEE Int. Conf. Electricity Distribution, 2012. https://ieeexplore.ieee.org/document/6508606. [Crossref]

4. G. Sivasankar, K. Vidhyaa, E. Anitha, B. A. Kumar, P. Vairaprakash, “Application of LUO Converter and Multilevel Cascaded Converter for Grid Integration of Solar PV Systems”, Int. Conf. Circuit, Power and Computing Technologies (ICCPCT), Mar 2016. https://ieeexplore.ieee.org/document/7530378. [Crossref]

5. M. G. Villalva, J. R. Gazoli, E. Ruppert, “Comprehensive approach to modelling and simulation of photovoltaic arrays”, IEEE Trans. Power Electron., vol.25, no.5, pp. 1198-1208, Mar 2009. [Crossref]

6. L. A. C. Lopez, A. M. Leinhardt, “A simplified nonlinear power source for simulating PV panels”, Power Electron. Specialist, Annual Conf. PESC, vol.4, pp. 1729-1734, Aug 2003.

7. M. G. Villalva, R. Gazoli, E. Ruppert, “Modelling and circuit simulation of photovoltaic arrays”, Journal of Power Electron., vol.14, no.1, pp. 35-45, 2009. [Crossref]

8. T. Esram, P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques”, IEEE Trans. Energy Con., vol.22, no.2, pp. 439-449, May 2007. [Crossref]

9. L. Kumar, S. Jain, “A novel multiple input DC-DC converter for electric vehicular applications”, IEEE Transportation electrification conference, pp. 1-6, Jun 2012. https://ieeexplore.ieee.org/document/6243427. [Crossref]

10. A. Lidozzi, L. Solero, “Power balance control of multiple-input DCDC power converter for hybrid vehicles”, IEEE Int. Symposium on Ind. Elect., vol.2, pp. 1467-1472, May 2004. [Crossref]

11. A. Sivaprasad, S. Kumaravel, S. Ashok, “Integration of Solar PV/Battery Hybrid System Using Dual Input DC-DC Converter”, Int. Conf. on Power and Energy Systems, Jul 2016. https://ieeexplore.ieee. org/document/7516473. [Crossref]

12. S. Saravanan, N. Ramesh Babu, “Performance Analysis of Boost & Cuk Converter in MPPT based PV system”, Int. Conf. on Circuit, Power and Computing Technologies, Jul 2015. https://ieeexplore. ieee.org/document/7159425. [Crossref]

13. S. Lakshmi, T. S. Renga Raja, “Design and implementation of an observer controller for a buck converter”, Turkish Journal of Elect. and Comp. Engg., vol.22, pp. 562-572, Jan 2014. [Crossref]

14. M. Shirazi, R. Zane, D. Maksimovic, “An auto-tuning digital controller for dc-dc power converters based on online frequency-response measurement”, IEEE Trans. Power Electron., vol.24, no.11, pp. 2578-2588, Aug 2009. [Crossref]

15. M. Ebrahimzadeh, A. Rahmati, “Adaptive and fast-response controller for boost PFC converter with wide range of operating conditions”, IEEE Power Electron. & Drive Syst. Conf., pp. 157-162, May 2010. [Crossref]

16. M. S. Jorge Alberto, P. Rodrigo Loera, H. Elvia Palacios, J. L. González-Martínez, “Modelling and control of a DC-DC quadraticboost converter with R2P2”, IET Power Electron., vol.7, no.1, pp. 11- 22, 2012.

17. A. Beccuti, S. Mariethoz, S. Cliquennois, S. Wang, M. Morari, “Explicit model predictive control of dc-dc switched-mode power supplies with extended kalman filtering”, IEEE Trans. Indus. Electron., vol.56, no.6, pp. 1864-1874, Feb 2009. [Crossref]

18. S. D. Saswati, N. Byamakesh, “Control analysis and experimental verification of a practical dc-dc boost converter”, Journal of Elect. Systems and Information Tech., vol.2, pp. 378-390, Dec 2015. [Crossref]

19. K. Mandal, A. Abdelali El, A. Abusorrah, M. Al-Hindawi, Y. Al-Turki, G. Damian, B. Soumitro, “Non-linear modelling and stability analysis of resonant DC-DC converters”, IET Power Elect., vol. 8, no.12, pp. 2492-2503, Dec 2015. [Crossref]

20. J. Morales, J. Leyva-Ramos, E. Carbajal, M. Ortiz-Lopez, “Average current-mode control scheme for a quadratic buck converter with a single switch”, IEEE Trans. Power Electron., vol.23, no.1, pp. 485- 490, Jan 2008. [Crossref]

21. R. Leya, L. Martínez-Salamero, H. Valderrama-Blavi, J. Maixé, R. Giral, F. Guinjoan, “Linear state feedback control of a bost converter for large-signal stability”, IEEE Trans. Circuits and Systems, vol.48, no.4, pp. 418-432, Mar 2001. [Crossref]

22. M. Shirazi, R. Zane, D. Maksimovic, “An auto-tuning digital controller for dc-dc power converters based on online frequency-response measurement”, IEEE Trans. Power Electron., vol.24, no.11, pp. 2578-2588, Dec 2009. [Crossref]

23. R. L. Colalla, A. El aroudi, I. Queinnec, “Robust LQR control for PWM inverter: An LMI approach”, IEEE Trans. Industrial Electron., vol. 56, no.7, pp. 2548-2558, 2009. [Crossref]

24. B. Hekimoğlu, S. Ekinci, “Optimally Designed PID Controller for a DC-DC Buck Converter via a Hybrid Whale Optimization Algorithm with Simulated Annealing”, Electrica, Vol.20, no.1, pp.19-27, Jan 2020. [Crossref]

25. J. Chen, G. X. Gu, C. N. Nett, “A new method for computing delay margins for stability of linear delay systems”, Systems & Control Letters, vol.26, no.2, pp.107-117, 1995. [Crossref]

26. H. R. Baghaee, M. Mirsalim, B. G. Gharehpetian, H. Ali Talebi, “A generalized descriptor-system robust H∞ control of autonomous microgrids to improve small and large signal stability considering communication delays and load nonlinearities”, Electrical power and Energy Systems, vol.92, pp. 63-82, Nov 2017. [Crossref]

27. A. Naveed, S. Sönmez, S. Ayasun, “Identification of Stability Delay Margin for Load Frequency Control System with Electric Vehicles Aggregator using Rekasius Substitution”, IEEE Milan Power Technology