A Molecularly Imprinted Polymer Based Biosensor for Electrochemical Impedance Spectroscopic Analysis

A molecularly imprinted polymer (MIP)-based impedimetric biosensor was developed for the electrochemical analysis of low-weight biological molecules. Synthetic polymeric matrices with specific and selective recognition sites, which are complementary to the shapes and sizes of the functional groups of analytes, can be prepared using the molecular imprinting method. In this study, a small molecule, tris(hydroxymethyl)aminomethane (TRIS), was used to coat a graphite pencil tip with a TRIS-containing polyacrylamide gel to fabricate a working electrode. The electrode modification and performance were evaluated using cyclic voltammetry and electrochemical impedance spectroscopy. The electrochemical properties of the modified electrodes were observed using an electrochemical cell comprising a Ag/AgCl reference electrode, a Pt wire as the counter electrode, and a pencil graphite tip as the working electrode using a redox-phosphate buffer solution with different concentrations of TRIS and Ethylenediaminetetraacetic acid (EDTA). The I–V and impedance performance of the chemically modified graphite pencil-tip electrodes exhibited decreased conductance and increased impedance correlating with the increase in TRIS concentration. Thus, MIP-based small-molecule biosensor prototypes can be promising economical replacements over other expensive sensors.

___

A. Turner, I. Karube, G. S. Wilson, “Biosensors: Fundamentals and Applications”, Oxford University Press, Oxford, U.K., 1987.

F. G. Banica, ed., “Chemical Sensors and Biosensors: Fundamentals and Applications”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2012. [CrossRef]

B. R. Eggins, “Chemical Sensors and Biosensors”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2002.

S. Yan, Y. Fang, Z. Gao, “Quartz crystal microbalance for the determination of daminozide using molecularly imprinted polymers as recognition element”, Biosensors and Bioelectronics, vol. 22, no. 6, pp. 1087-1091, Apr, 2007. [CrossRef]

C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, and M. J. Whitcombe, “Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003”, J Molecular Recognition, vol. 19, no. 2, pp. 106-180, Jan, 2006. [CrossRef]

W. Li and S. Li, “Oligomers-Polymer Composites-Molecular Imprinting”, Springer, Berlin-Heidelberg, Germany, 2006.

G. Guan, B. Liu, Z. Wang, Z. Zhang, “Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors”, Sensors, vol. 8, no. 12, pp. 8291-8320, Dec, 2008. [CrossRef]

L. Ye and K. Haupt, “Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery”, Analytical and Bioanalytical Chemistry, vol. 378, no. 8, pp. 1887-1897, Jan, 2004. [CrossRef]

A. Bossi, F. Bonini, A. P. F Turner and S. A. Piletsky, “Molecularly imprinted polymers for the recognition of proteins: the state of the art”, Biosensors and Bioelectronics, vol. 22, no. 6, pp. 1131-1137, Jan, 2007. [CrossRef]

E. Caro, N. Masqué, R. M. Marcé, F. Borrull, P. A. Cormack, and D. C. Sherrington, “Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples”, J Chromatography A, vol. 963, no. 1, pp. 169-178, July, 2002. [CrossRef]

G. Vasapollo, R. D. Sole, L. Mergola, M. R. Lazzoi, A. Scardino, S. Scorrano, and G. Mele, “Molecularly imprinted polymers: present and future prospective”, Int. J Mol Sci, vol. 12, no. 9, pp. 5908-5945, Sept 14, 2011. [CrossRef]

G. Gomori, “Preparation of Buffers for Use in Enzyme Studies”, Methods Enzymol., vol. 1, pp. 138-146, 1955. [CrossRef]

E. Barsoukov and J. R. Macdonald, “Impedance spectroscopy: theory, experiment, and applications”, John Wiley & Sons, Hoboken, New Jersey, U.S.A., 2005. [CrossRef]

B. Ozcan, B. Demirbakan, G. Yesiller and M.K. Sezginturk, “Introducing a new method for evaluation of the interaction between an antigen and an antibody: Single frequency impedance analysis for biosensing systems”, Talanta, vol. 125, pp. 7-13, July, 2014. [CrossRef]

S. N. Topkaya, D. Ozkan-Ariksoysal, B. Kosova, R. Ozel and M. Ozsoz, “Electrochemical DNA biosensor for detecting cancer biomarker related to glutathione S-transferase P1 (GSTP1) hypermethylation in real samples”, Biosensors and Bioelectronics, vol. 31, no. 1, pp. 516-522, Jan, 2012. [CrossRef]

E. Asav and M. K. Sezginturk, “A novel impedimetric disposable immunosensor for rapid detection of a potential cancer bio marker”, Int. J Biological Macromolecules, vol. 66, pp. 273-280, May, 2014. [CrossRef]

L. Figueiredo, M. F. R., Pereira, M. M. A. Freitas and J. J. M. Orfao, “Modification of the surface chemistry of activated carbons”, Carbon, vol. 37, no. 9, pp. 1379-1389, Dec, 1999. [CrossRef]

I. G. David, D.-E. Popa and M. Buleandra, “Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis”, J Analytical Methods in Chemistry, https://doi.org/10.1155/2017/1905968, Jan, 2017. [CrossRef]

I. S. Park and N. Kim, “Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal”, Biosensors and Bioelectronics, vol. 13, no. 10, pp. 1091-1097, Nov, 1998. [CrossRef]

I. Markovich and D. Mandler, “The effect of an alkylsilane monolayer on an indium tin oxide surface on the electrochemistry of hexacyanoferrate”, J Electroanalytical Chemistry, vol. 484, no. 2, pp. 194-202, Apr, 2000. [CrossRef]