Elektrodepolama ile Üretilen Co, Ni ve CoNi Alaşımlı İnce Filmlerin Yapısal ve Manyetik Özelliklerinin İncelenmesi

Elektrodepolama yöntemi ile nanoparçacıkların ince film kaplama olarak üretimi diğer yöntemlere göre daha kolay ve ucuz yapılmaktadır. Bunun nedeni, ince film üretiminin banyo içeriğindeki bileşenlerin ve üretim şarlarının değişimi ile kontrol edilebilmesidir. Bu çalışmada, elektrodepolama yöntemiyle, kobalt sülfat (CoSO4.7H2O), nikel sülfat (NiSO4.6H2O), nikel (II) klorür (NiCl2.6H2O) ve borik asit (H3BO3) den oluşan banyo kompozisyonundan saf Co, Ni ve CoNi alaşımlı ince filmler üretildi. Üretilen ince filmlerin kristal yapısı (XRD), morfolojisi (SEM), element bileşimi (ICP) ve manyetik özellikleri (VSM) incelendi. Kaplama banyosunun kimyasal özellikleri de dönüşümlü voltametri (CV) yöntemiyle incelendi. İnce filmlerin manyetizasyon ölçümleri + 75000 Oe ile -75000 Oe arasında manyetik alan uygulanarak yapıldı ve histerezis döngüleri elde edildi. Üretilen Co, Ni ve CoNi filmleri ferromanyetik malzeme özellikleri gösterdi. Bu alaşımların koversite (Hc), kalıcı mıknatıslanma (Mr) ve doyum mıknatıslanma (Ms) değerleri; kobalt miktarı, manyeto kristal anizotropi ve tane boyutundan önemli ölçüde etkilendi. Yapılan çalışmada, banyo bileşimi kontrol edilerek sert ve yumuşak manyetik özelliklere sahip malzemelerin üretilebileceği anlaşıldı.

Investigation of Structural and Magnetic Properties of Co, Ni and CoNi Alloy Thin Films by Fabricated with Electrodeposition

The production of nanoparticles as thin film coating performed with electrodeposition method is easier and cheaper than other methods. Because, thin film production can be controlled with the change of ingredients in the bath composition. In this study, Co, Ni, and CoNi alloy thin films were fabricated with electrodeposition method through the bath composition that consists of cobalt sulphate (CoSO4.7H2O), nickel sulphate (NiSO4.6H2O), nickel (II) chloride (NiCl2 6H2O) and boric acid (H3BO3). Crystal structure (XRD), morphological (SEM), elemental composition (ICP) and magnetic properties (VSM) of the fabricated thin films were investigated. Chemical properties of coating bath (CV) was examined as well. Magnetization measurements of the thin films were performed by applying magnetic fields between + 75000 Oe and -75000 Oe and then hysteresis loops were obtained. The Co, Ni, and CoNi films showed ferromagnetic material properties. Coercivity (Hc), permanent magnetization (Mr), saturation magnetization (Ms) values of these alloys were significantly affected by the amount of the cobalt, magneto crystal anisotropy and grain size. It was understood that some materials having hard and soft magnetic properties can be fabricated by controlling the bath composition.

___

  • [1]. Marikkannu KR., Paruthimal Kalaignan G., Vasudevan T., “The role of additives in the electrodeposition of nickel–cobalt alloy from acetate electrolyte”, Journal of Alloys and Compounds, 2007, 438: 332-336.
  • [2]. Sharma A., Chhangani S., Madhavan R., Suwas S., “Correlation between crystallographic texture, microstructure and magnetic properties of pulse electrodeposited nanocrystalline Nickel–Cobalt alloys”, Journal of Magnetism and Magnetic Materials, 2017, 434: 68-77.
  • [3]. Arenas JV., Pritzker M., “Steady-state model for anomalous Co–Ni electrodeposition in sulfate solutions”, Electrochimica Acta, 2012, 66: 139-150.
  • [4]. Özdemir R., “Effect of the Applied Current Density on the Structural and Magnetic Properties of the Electrodeposited Cobalt-Nickel Alloy Thin Films”, Acta Physica Polonica A, 2017, 132 (3): 770-774.
  • [5]. Xu C., Nie D., Chen H., Wang Y., Liu Y., “Template-free synthesis of magnetic CoNi nanoparticles via a solvo thermal method”, Materials Letters, 2015, 138: 158 -161.
  • [6]. Bekish YN., Poznyak SK., Tsybulskaya LS., Gaevskaya TV., Kukareko VA., Mazanikc AV., “Electrodeposited Ni-Co-B Alloy Coatings: Preparation and Properties”, Journal of The Electrochemical Society, 2014, 161 (12): D620-D627.
  • [7]. Fukui R., Katayama Y., Miura T. The effect of organic additives in electrodeposition of Co from an amide-type, ionic liquid. Electrochimica Acta. 2011, 56: 1190-1196.
  • [8]. Lupi C., Dell’Era A., Pasquali M. Effectiveness of sodium citrate on electrodeposition process of Ni-Co-W alloys for hydrogen evolution reaction. Int J Hydrogen Energy. 2017, 42: 28766-28776.
  • [9]. Özdemir R., Karahan İH., Karabulut O., “ A Study on the Electrodeposited Cu-Zn Alloy Thin Films”, Metallurgical and Materials Transactions A, 2016, 47 (11): 5609-5617.
  • [10]. Karahan İ.H., Ozdemir R., “Genetic programming modelling for the electrical resistivity of Cu–Zn thin films”, Pramana - J Phys 2018, 91:42.
  • [11]. Xu Q., Sun CX., Wang ZJ., Liu JJ., Ren YX., Hao SZ., Zhu JL., Sun YB., Sun HY., “Preparation and characterization of iridescent Ni1-xCox containing anodic aluminum oxide films”, Dyes and Pigments, 2017, 147: 313-317. [12]. Zhou C., Du H., Li H., Qian W., Liu T., “Electrode based on nanoporous (Co-Ni)@(CoO, NiO) nanocomposites with ultrahigh capacitance after activation”, Journal of Alloys and Compounds, 2019, 778: 239-246.
  • [13]. Lee CK., “Effects of hydrogen and oxygen on the electrochemical corrosion and wear-corrosion behavior of diamond films deposited by hot filament chemical vapor deposition”, Applied Surface Science, 2008, 254: 4111-4117.
  • [14]. Noor A., Azura M.A., Chin S.F., “Impact on Development of ZnS Nanoparticles Thin Film Deposited by Chemical Bath Deposition and Spin Coating”, International Journal of Advanced Engineering and Nano Technology (IJAENT) 2021, 4:5. [15]. Özdemir R., Karahan İH., “Electrodeposition and properties of Zn, Cu, and Cu1−xZnx thin films”, Applied Surface Science, 2014, 318: 314–318.
  • [16]. Lee K., Kang J., Jin S., Lee S., Bae J., “A novel sol-gel coating method for fabricating dense layers on porous surfaces particularly for metal-supported SOFC electrolyte”, Int J Hydrogen Energy, 2017, 42: 6220-6230.
  • [17]. Zaremba O.T., Goldt A.E., Khabushev E.M., Anisimov A.S., Nasibulin A.G., “Highly efficient doping of carbon nanotube films with chloroauric acid by dip-coating”, Materials Science and Engineering B, 2022, 278:115648.
  • [18]. Maosen Z., Shujiang G., Gang C., Fuhui W., Douglas G.I., “Sputtered Fe1·5CoNi0.5 coating: An improved protective coating for SOFC interconnect applications”, International Journal of Hydrogen Energy, 2022, 47:22, 11658-11668.
  • [19]. Sarigül H., Özçeşmeci M., Sorar İ., “Sol-Jel Yöntemiyle Hazırlanan Kobalt Ftalosiyanin Katkılı TiO2 Filmlerin Optik ve Yapısal Özelliklerinin İncelenmesi”, El-Cezerî Journal of Science and Engineering, 2021, 8:1, 299-308.
  • [20]. Yang Q., Lv C., Huang Z., Zhang C., “Amorphous film of ternary Ni-Co-P alloy on Ni foam for efficient hydrogen evolution by electroless deposition”, Int J Hydrogen Energy, 2018, 43: 7872-7880.
  • [21]. Zhu YL., Katayama Y., Miura T., “Effects of coumarin and saccharin on electrodepositionof Ni from a hydrophobic ionic liquid”, Electrochimica Acta, 2014, 123: 303-308.
  • [22]. Sahin B., Bayansal F., Yuksel M., Biyikli N., Çetinkara HA., “Effect of coumarin concentration on the physical properties of CdO nanostructures. Ceramics International”, 2014, 40: 5237-5243.
  • [23]. Özdemir R., Korkmaz C.A., Karahan İ.H., “Investigation of the structural and magnetic properties of the cobalt-nickel alloys fabricated in various electrolyte solutions”, Acta Physica Polonica A, 2017, 132:3, 1045-1049.
  • [24]. Liu F., Deng Y., Han X., Hu W., Zhong C., “Electrodeposition of metals and alloys from ionic liquids. Journal of Alloys and Compounds”, 2016, 654: 163-170.
  • [25]. Brenner A., “Electrodeposition of Alloys Principles and Prattice”, Chap. Academic Pres. NewYork, 1963: 457.
  • [26]. Aktas S., Yavuz A., Kaplan K., Bedir M., “Electrochemical Behavior of Tin Based Film Cathodically Deposited from Non-Aqueous Media”, Cezerî Journal of Science and Engineering”, 2020, 7:2, 639-648.
  • [27]. Fenineche N., Coddet C., “Effect Of Electrodeposition Parameters On The Microstructure And Mechanical Properties Of Co-Ni Alloys”, Surface and Coatings Technology, 1990, 41: 75-81.
  • [28]. Karpuz A., Kockar H., Alper M., “Effect of film thickness on properties of electrodeposited Ni–Co films”, Applied Surface Science, 2012, 258: 5046–5051.
  • [29]. Esteves MC., Sumodjo PTA., Podlaha EJ., “Electrodeposition of CoNiMo thin films using glycine as additive: anomalous and induced code position”, Electrochimica Acta, 2011, 56: 9082– 9087.
  • [30]. Das A., “Prodding Magnetic Properties of Electrodeposited Co/Cu and Ni/Cu alloy Films by Scanning Probes”, Master Thesis, Department of Metallurgical and Materials Engineering. National Institute of Technology, 2010.
  • [31]. Ergeneman O., Sivaraman KM., Pané S., Pellicer E., Teleki A., Hirt AM., Baró MD., Nelson BJ., “Morphology, structure and magnetic properties of cobalt–nickel films obtained from acidic electrolytes containing glycine”, Electrochimica Acta, 2011, 56: 1399–1408.
  • [32]. Kemp TJ., “Instrumental Methods in Electrochemistry”, Southampton Electrochemistry Group, in: T.J. Kemp (Ed.), Ellis Horwood Ltd. Chichester, UK. 1985.
  • [33]. Grujicic D., Pesic B., “Electrodeposition of copper, the nucleation mechanisms”. Electrochimica Acta”, 2002, 47: 2901-2912.
  • [34]. G´omez E., Pan´e S., Alcobe X., Vall´es E., “Influence of a cationic surfactant in the properties of cobalt–nickel electrodeposits”, Electrochimica Acta, 2006, 51: 5703–5709.
  • [35]. Darband GB., Aliofkhazraei M., Rouhaghdam AS., Kiani MA., “Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient nonnoble- metal electrocatalyst for hydrogen evolution reaction” Applied Surface Science, 2019, 465: 846–862.
  • [36]. Karpuz A., Kockar H., Alper M., Karaagac O., Haciismailoglu M., “Electrodeposited Ni–Co films from electrolytes with different Co contents”, Applied Surface Science, 2012, 258: 4005-4010.
  • [37]. Olvera S., Estrada EMA., Marcos JS., Palomares FJ., Vazquez L., Herrasti P., “Effect of the low magnetic field on the electrodeposition of CoxNi100-x alloys”, Materials Characterization, 2015, 105: 136-43.
  • [38]. Moskaltsova A., Proenca MP., Nedukh SV., Sousa CT., Vakula A., Kakazei GN., Tarapov SI., Araujo JP., “Study of magnetoelastic and magneto crystalline anisotropies in CoxNi1-x nanowire arrays”, Journal of Magnetism and Magnetic Materials, 2015,374: 663-668.
  • [39]. Rafique MY., Pan L., Farid A., “From nano-dendrite to nano-sphere of Co100-xNix alloy: Composition dependent morphology, structure and magnetic properties”, Journal of Alloys and Compounds, 2016, 656: 443-451.
  • [40]. Rafailović LD., Minić DM., “Deposition And Characterisation of Nanostructured”, Hem. ind. 2009, 63 (5a): 557-569.
  • [41]. Tian H., Khanaki A., Das P., Zheng R., Cui Z., He Y., Shi W., Xu Z., Lake R., Liu J., “Role of Carbon Interstitials in Transition Metal Substrates on Controllable Synthesis of High-Quality Large-Area Two-Dimensional Hexagonal Boron Nitride Layers”, Nano Letters, 2018, 18 (6): 3352-3361.
  • [42]. Armyanov S., “Crystallographic structure and magnetic properties ofelectrodeposited cobalt and cobalt alloys”, Electrochimica Acta, 2000, 45: 3323-3335.
  • [43]. Samardak S., Nasirpouri F., Nadi M., Sukovatitsina EV., Ognev AV., Chebotkevich LA., Komogortsev SV., “Electrodeposition of nanostructured CoNi thin films and their anomalous infrared properties”, J. Magnetism Magnetic Mater, 2015, 383: 94-99.
  • [44]. Teber A., Unver I., Kavas H., Aktas B., Bansal R., “Knitted radar absorbing materials (RAM) based on nickel–cobalt, magnetic materials”, Journal of Magnetism and Magnetic Materials, 2016, 406: 228-232.
  • [45]. Elrouby M., El-Lateef HMA., Sadek M., “Electrodeposited Pt nanorods on a novel flowered-like nanostructured Ni-Co alloy as an electrocatalyst for methanol oxidation”, Int J Hydrogen Energy, 2019, 44: 13820-13834.
  • [46]. Djamal M., Ramli, Khairurrijal and Haryanto F., “Development of Giant Magnetoresistance Material Based on Cobalt Ferrite”, Acta Physica Polonica, 2015, 128: No. 2-B; 19-22.
  • [47]. Madhavan R., Suwas S., “Evolution of deformation texture and magnetic properties in a nanocrystalline nickel-20 wt% cobalt alloy”, Journal of Magnetism and Magnetic Materials, 2015, 378: 239-245.
  • [48]. Noori F., Ramazani A., Kashi MA., “Controlling structural and magnetic properties in CoNi and CoNiFe nanowire arrays by fine-tuning of Fe content”, Journal of Alloys and Compounds. 2018, 756: 193-201.
  • [49]. Laslouni W., Azzaz M., “Electromagnetic Properties in Nanostructured Alloy Cu70Co30 Obtained by a Non-Equilibrium Method”, Acta Phys. Pol. A, 2016, 130: 112-114.
  • [50]. Karpuz A., Kockar H., Alper M., “The effect of different chemical compositions caused by the variation of deposition potential on properties of Ni–Co films”, Applied Surface Science, 2011, 257: 3632-3635.
  • [51]. Cojocaru P., Magagnin L., Gómez E., Vallés E., “Electrodeposition of CoNi and CoNiP alloys in sulphamate electrolytes”, Journal of Alloys and Compounds, 2010, 503: 454-459.
  • [52]. Chen QS., Zhou ZY., Guo GC., Sun SG., “Electrodeposition of nanostructured CoNi thin films and their anomalous infrared properties”, Electrochimica Acta, 2013, 113: 694-705.
  • [53]. Ho CY., Lin TH., Chang YJ., “Influence of various annealed Ni-Co nanowire properties upon the capability of immobilization of histidine-tagged protein”, Journal of Alloys and Compounds, 2015, 648: 726-731.
  • [54]. Xu J., Xu Y., “Fabrication and magnetic property of binary Co–Ni nanowire array by alternating current electrodeposition”, Applied Surface Science, 2007, 253: 7203-7206.
  • [55]. Xu Q., Wang ZJ., Wang YG., Sun HY., “The effect of Co content on the structure and the magnetic properties of CoxNi1-x nanotubes”, Journal of Magnetism and Magnetic Materials, 2016, 419: 166-170.
  • [56]. Ciszewski A., Posluszny S., Milczarek G., Baraniak M., “Effects of saccharin and quaternary ammonium chlorides on the electrodeposition of nickel from a Watts-type electrolyte”, Surface and Coatings Technology, 2004, 183: 127–133.