Analysis of Students' Written Scientific Argument Generate and Evaluation Skills / Öğrencilerin Yazılı Bilimsel Argüman Oluşturma ve Değerlendirme Becerilerinin İncelenmesi

Argümanlar fen sınıflarında sıklıkla kullanılır. Öğrencilerin fen sınıflarında argümanla karşılaşma biçimleri çoğunlukla; kendilerine öğretmenleri tarafından argüman sunulması ve kendilerinden argüman üretilmesinin istenmesi şeklindedir. Bu çalışmada öğrencilerin yazılı argüman yapılandırma ve sunulan argümanı değerlendirme becerileri incelenmiştir. Bu amaçla lise 9., 10., 11. ve 12. sınıf öğrencilerinin (n=165) kimyasal tepkimeler, erime ve çözünme, maddenin doğası konularıyla ilgili yapılandırdıkları 495 yazılı argüman, Toulmin'in Argüman Modeli'nde yer alan iddia, gerekçe, delil bileşenleri ve bu bileşenlerin kalitesi açısından incelenmiş ve sınıflar arası bir karşılaştırma yapılmıştır. Ardından bu yazılı argümanlardan 14 tanesinin, 8 üniversite öğrencisi tarafından değerlendirilmesi sağlanmıştır. Araştırmanın bulguları; argüman oluşturma becerisinin konu içeriğine bağlı olduğunu, öğrencilerin iddia oluşturmada başarılı iken gerekçe ve delil oluşturmada yetersiz olduklarını, öğrencilerin artan öğrenim ve zihinsel gelişim seviyeleri ile argüman oluşturma becerileri arasında ilişki olduğu yönünde genelleme yapılamayacağını, öğrencilerin argüman değerlendirirken iddia-gerekçe bağlantısını test etmede ve gerekçenin iddia için uygun destek sağlayıp sağlamadığını belirlemede yetersiz olduklarını göstermektedir.

-

Arguments are often used in science classes. Students encounter arguments in two ways. Teachers present argument to students and ask students produce argument in science classes. This study examined students' written arguments and compared classes of high school 9th-, 10th-, 11th-, and 12th-year students (n = 165), who constructed 495 written arguments related to the issues of chemical reaction, melting and dissolution, and nature of matter from the point of components of the Toulmin‟s Argument Pattern such as claim, evidence, warrant and the quality of these components. Then 14 written arguments were evaluated by eight university students. The research findings are as follows: The skills of making arguments depends on the subject, while the students are successful in making a claim they are insufficient in making justification and showing evidence, it is not right to make a generalization regarding the correlation between the students‟ increased learning and mental development level and skills to make arguments, the students have insufficient skills in testing the connection between claim and justification and in defining whether the justification provides appropriate support for the claim.

___

  • Bazerman, C. (1988). Shaping written knowledge the genre and activity of the experimental article in science. Madison, WI: University of Wisconsin Press.
  • Bell, P. & Linn, M. C. (2000). Scientific arguments as learning artifacts: designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797-817.
  • Billig, M. (1987). Arguing and thinking: A Rhetorical approach to social psychology. Cambridge: Cambridge University Press.
  • Carin, A. A. & Bass, J. E. (2001). Teaching science as inquiry (Ninth edition). New Jersey: Prentice-Hall, Inc.,Upper Saddle River.
  • Cavagnetto, A. (2011). The multiple faces of argument in school science. Science Scope, 35(1), 34-37.
  • Childs, P. E. & Sheehan M. (2009). What‟s difficult about chemistry? An Irish perspective. Chemistry Education Research and Practice, 10, 204-218.
  • Choi, A., Notebaert, A., Diaz, J. & Hand, B. (2010). Examining arguments generated by year 5, 7, and 10 students in science classrooms. Research in Science Education, 40(2), 149-169.
  • Çalık, M., Ayas, A. & Ünal, S. (2006) Çözünme kavramıyla ilgili öğrenci kavramalarının tespiti: Bir yaşlar arası karşılaştırma çalışması. GÜ Türk Eğitim Bilimleri Dergisi, 3(4), 309-322. de Berg, K. (2006). What happens when salt dissolves in water? An ıntroduction to scientific argument and counter argument drawn from the history of science. Teaching Science, 52(1), 24-27.
  • Demircioğlu, T. & Uçar, S. (2012). The effect of argument-driven inquiry on preservice science teachers‟ attitudes and argumentation skills. In 4th World Conference on Educational Sciences (WCES-2012) 02-05 February, Barcelona, Spain.
  • Driver, R., Newton, P. & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287-312.
  • Duschl, R. A. & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39-72.
  • Erduran, S., Simon, S. & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's Argument Pattern for studying science discourse. Science Education, 88(6), 915-933.
  • Goodwin, A. (2002). Is salt melting when it dissolves in water?. Journal of Chemical Education, 79(3), 393-396.
  • Günel, M., Kıngır, S. & Geban, Ö. (2012). Argümantasyon tabanlı bilim öğrenme (ATBÖ) yaklaşımının kullanıldığı sınıflarda argümantasyon ve soru yapılarının incelenmesi. Eğitim ve Bilim, 37(164), 316-330.
  • Harlow, B. D. & Otero, K. V. (2003). An examination of children‟s scientific argumentation. Retrieved January 15, 2011, from www.colorado.edu/physics/.../papers/.../Harlow_Otero_PERC03.pdf.
  • Herrenkohl, L. R. & Guerra, M. R. (1998). Participant structures, scientific discourse and student engagement in fourth grade. Cognition and Instruction, 16(4), 431-473.
  • Jimenez-Aleixandre, M. P., Rodriguez, A. B. & Duschl, R.A. (2000). “Doing the lesson‟‟ or „„doing science‟‟: argument in high school genetics. Science Education, 84(6), 757-792.
  • Kaya, O. N. & Kılıç, Z. (2008). Etkin bir fen öğretimi için tartışmacı söylev. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi (KEFAD), 9(3), 89-100. Khishfe, R. (2012). Relationship between nature of science understandings and argumentation skills: A role for counterargument and contextual factors. Journal of Research in Science Teaching, 49(4), 489-514.
  • Kuhn, T. S. (2006). Bilimsel devrimlerin yapısı (Çev. Nilüfer Kuyaş). İstanbul: Kırmızı Yayınları.
  • Larson, A. A., Britt, M. A. & Kurby, C. A. (2009). Improving students‟ evaluation of informal arguments. The Journal of Experimental Education. 77(4), 339-365.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. (Second Edition). California: SAGE Publications.
  • Newton, P., Driver, R. & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576.
  • Norris, S. P. & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224-240.
  • NRC (1996). National Science Education Standards. Retrieved March 12, 2012, from http://www.nap.edu/openbook.php?record_id4962&page=23
  • Nussbaum, E. M. (2011). Argumentation, dialogue theory, and probability modeling: Alternative frameworks for argumentation research in education. Educational Psychologist, 46(2), 84-106.
  • Okumuş, S. & Ünal, S. (2012). The effects of argumentation model on students‟ achievement and argumentation skills in science. In 4th World Conference on Educational Sciences (WCES-2012) 02-05 February, Barcelona, Spain.
  • Osborne, J. (2002). Science without literacy: A ship without a sail? Cambridge Journal of Education, 32(2), 203-217.
  • Osborne, J., Erduran, S. & Simon, S. (2004). Enhancing the quality of argument in school science. Journal of Research in ScienceTeaching, 41(10), 99410
  • Özmen, H., Ayas, A. & Coştu, B. (2002), Fen bilgisi öğretmen adaylarının maddenin tanecikli yapısı hakkındaki anlama seviyelerinin ve yanılgılarının belirlenmesi. Kuram ve Uygulamada Eğitim Bilimleri, 2(2), 507-529.
  • Russell, T. L. (1983). Analzing arguments in science classroom discourse: Can teachers‟ questions distort scientific authority. Journal of Research in Science Teaching, 20, 27-45.
  • Ryu, S. & Sandoval, W. A. (2012). Improvements to elementary children's epistemic understanding from sustained argumentation. Science Education, 96(3), 488-526.
  • Sampson, V. & Clark, D. B. (2008). Assessment of the ways students generate arguments science education: current perspectives and recommendations for future directions. Science Education, 92(3), 447-472.
  • Sandoval, W. A. & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88, 345-372.
  • Simon, S. (2008). Using Toulmin‟s Argument Pattern in the evaluation of argumentation in school science. International Journal of Research and Method in Education. 31(3), 277-289.
  • Simon, S., Erduran, S. & Osborne, J. (2006). Learning to teach argumentation: research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260.
  • Sirhan, G. (2007). Learning difficulties in chemistry: An Overview. Türk Fen Eğitimi Dergisi (TÜFED), 4(2), 2-20.
  • ġahin, Ç. & Çepni, S. (2011).“Yüzme- batma, kaldırma kuvveti ve basınç” kavramları ile ilgili iki aşamalı kavramsal yapılardaki farklılaşmayı belirleme testi geliştirilmesi. Türk Fen Eğitimi Dergisi (TÜFED), 8(1), 79-110.
  • Tez, Z. (2000) Bilimde ve sanayide kimya tarihi. Ankara: Nobel Yayın ve Dağıtım. Tippett, C. (2009). Argumentation: The language of science. Journal of Elementary Science Education. 21(1), 17-25.
  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press. Alper, bence bu denklemde bir hata var. Çünkü …..
Eğitimde Kuram ve Uygulama-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2005
  • Yayıncı: Çanakkale Onsekiz Mart Üniversitesi
Sayıdaki Diğer Makaleler

How are We Persuaded? Persuasive Text and Structure / Nasıl İkna Ediliyoruz? İkna Edici Metin ve Yapısı

Mehmet KURUDAYIOĞLU, Eren YILMAZ

Body Language Scale: Validity and Reliability Study / Beden Dili Ölçeği: Geçerlik ve Güvenirlik Çalışması

Mehmet TOK, Hasan TEMEL

The Effects of a Distance Education Programming Language Course on Student Performance / Uzaktan Eğitimle Verilen Programlama Dilleri Dersinin Öğrenen Başarısı Üzerine Etkisi

Gürhan DURAK

The Effect of Using Documentary Movies on 8th Grade Students' Science Learning / Fen ve Teknoloji Dersinde Belgesel Kullanımının 8. Sınıf Öğrencilerinin Başarılarına Etkisi

Munise SEÇKİN KAPUCU, Cemil AYDOĞDU

İLKOKUL VE ORTAOKUL ÖĞRENCİLERİNİN VAN HIELE GEOMETRİK DÜŞÜNME DÜZEYLERİNİ YORDAYAN DEĞİŞKENLER

Ayten BAL

(OKUL MÜDÜRLERİNİN ROL ÖNCELİKLERİ)

Aydın BALYER

Prospective Information Technologies Teachers' Reflective Thinking Levels in Their Blogs / "Bilişim Teknolojileri Öğretmen Adaylarının Bloglarında Kullandıkları Yansıtıcı Düşünme Düzeyleri"

Harun ÇİĞDEM, Adile Aşkım KURT

An Evaluation of Teachers' Views Towards Social Studies Curriculum in Connection with Their Epistemological Beliefs / Sosyal Bilgiler Dersi Öğretim Programına Yönelik Öğretmen Görüşlerinin Epistemolojik İnançlar Bağlamında Değerlendirilmesi

Selin KÖSEMEN, Abdurrahman ŞAHİN

“Interest” and the Domains of Interest in the Curricula of CEIT Departments / “İlgi” ve BÖTE Öğrencilerinin Çalışma Alanlarındaki Önemi

Can MEŞE, Seda ÖZER, Muhterem DİNDAR, H. Ferhan ODABAŞI

(EMILY DICKINSON’UN ‘THE BRAIN IS WIDER THAN THE SKY’ ADLI ESERİNİN YABANCI DİL ÖĞRETİMİ SINIFLARINDA GÖREV TABANLI ÖĞRETİM İLE AÇIMLAMASI)

Kadim ÖZTÜRK