Laboratuvar tipi yağış benzeticisinde kullanılan farklı fulljet başlıkların bazı yağış özellikleri açısından karşılaştırılması

Amaç: Farklı basınçlarda Full Jet tipi başlıklar kullanılarak yağış şiddetleri, Christiansen katsayıları, damla çapları ve kinetik enerjilerin belirlenmesi ve karşılaştırılması amaçlanmıştır. Materyal ve Yöntem: Bu çalışmada yapay yağışlar, ½ HH -36 SQ, ½ HH-40 SS ve ½ HH-50 WSQ başlıklar kullanılarak 30, 40, 50, 60 ve 70 kPa basınçlarında 5 dakika süreyle platform üzerine yerleştirilen 17 kap (250 cm3) üzerinde 3 tekrarlı uygulandı. Damla çapları un yumağı yöntemi ile belirlendi. Yağış şiddetleri, Christiansen katsayıları, terminal hızları, damla çapı oranı, terminal hız oranı, moment, kinetik enerji, birim moment, birim kinetik enerji oranları ve her bir başlık için kinetik enerjiler hesaplanmıştır. Araştırma Bulguları: Bu çalışmada, başlıklar için ortalama yağmur yoğunlukları 97-210 mm h-1, ortalama homojenlik katsayıları % 85-86, ortalama damla çapları 1.89-2.11 mm, ortalama terminal hızları 6.35-6.79 m s-1 arasında bulunmuştur. Her bir başlık için ortalama kinetik enerjiler de 16.30-23.32 J m-2 mm-1 arasında hesaplanmıştır. Sonuçlar: Bu çalışmaya göre, erozyon çalışmaları için en uygun başlığın Fulljet ½ HH-50 WSQ olduğu saptanmıştır.

Comparison of different fulljet nozzles used in laboratory type rain simulator in terms of some rainfall characteristics

Objective: The objective of this study was to determine and compare rain intensities, Christiansen coefficients, drop diameters and kinetic energies, by using Full Jet type nozzles at different pressures. Material and Methods: In this study, simulated rainfalls were applied on 17 cups (250 cm3), were placed on a platform, during 5 minutes at 30, 40, 50, 60 and 70 kPa pressures by using ½ HH-36 SQ, ½ HH-40 SS and ½ HH-50 WSQ nozzles with 3 replicated. The drop diameters were determined by the flour pellet method. Rainfall intensities, Christiansen coefficients, terminal velocities, drop diameter ratio, terminal velocity ratio, moment, kinetic energy, moment per unit area, kinetic energy per unit area ratios and kinetic energy for each nozzles were calculated. Results: It was found that average rain intensities were 97-210 mm h-1, average uniformity coefficients were 85-86 %, average drop diameters were 1.89-2.11 mm, average terminal velocities were 6.35-6.79 m s-1 for nozzles. Average kinetic energies for each nozzles were also calculated between 16.30-23.32 J m-2 mm-1. Conclusions: According to this study, it was determined that the most suitable nozzle for erosion studies is Fulljet ½ HH-50 WSQ.

___

  • Agassi, M. & J.M. Bradford, 1999. Methodologies for interrill erosion studies. Soil and Tillage Research, 49: 277-287.
  • Anonymous, 1999. SPSS 9 for Windows User’s Guide. Copyright 1999 by SPSS Incorporation SPSS, Chicago, IL.
  • Anonymous, 2019. CAT 75 HYD., Wheaton, IL 60187-7901 USA. http://spraying systems co., Erişim tarihi: 20.04.2020.
  • Arnaez, J., T. Lasanta, R. Ruiz-Flano & L. Ortigosa, 2007. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil and Tillage Research, 93: 324-334. https:// doi.10.1016/j.still.2006.05.013.
  • Bubenzer, G.D. & L. D. Meyer, 1965, Simulation of rainfall and soils for laboratory research. Transaction of American Society of Agricultural Engineers, 8: 73-75.
  • ÇEM, 2018. Dinamik Erozyon Modeli ve İzleme Sistemi (DEMİS) Türkiye Su Erozyonu İstatistikleri, Teknik Özet. T.C. Tarım ve Orman Bakanlığı Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü, Ankara, TÜRKİYE.
  • Cerda, A., 1997. Rainfall drop size distrubution in the Western Mediterranean basin, Valencia, Spain. Catena 30: 169-182. https://doi.org/10.1016/S0341-8162(97)00019-2.
  • Chouksey, A. V. Lambey, B. R. Nikam, S. P., Aggarvald & S. Dutta, 2017. Hydrolgical modelling using a rainfall simulator over an experimental hillslope plot. Hydrology 4: 17. https://doi. 10.3390/hydrology4010017.
  • Christiansen, J. E., 1942. Irrigation by sprinkling. University of California Agricultural Experiment Station Bulletin, No: 670.
  • De Sausa Junior, S. F., T.A. Mendes & E. Q. De Siqueirra, 2017. Development and calibration of a rainfall simulator for hydrological studies. Brazilian Journal of Water Resources, 22 (59): 2017. https://doi.org/10.1590/2318-0331.0217170015.
  • Erpul, G. & M. R. Çanga, 2000. Doğal yağışların laboratuvar tipi yapay yağışlar ile karşılaştırılması. Tarım Bilimleri Dergisi, 6 (1): 32-35.
  • Esteves, M., O. Planchon, J. M. Lapetite, N. Silvera & P. Cadet, 2000. The” EMIRE” large rainfall simulator: Design and Field Testing. Earth Surface Processes and Landforms, 25: 681-690. https://doi.10.1002/1096-9837(200007)25:73.0.CO;2-8.
  • Houndonougbo, M. & G. Yönter, 2020. Farklı basınçlarda veejet ve fulljet başlıkların yağış şiddeti, Christiansen katsayısı, yüzey akış ve toprak kayıpları üzerine etkilerinin kıyaslanması üzerine bir ön çalışma. Ege Üniv. Ziraat Fak. Derg., 57 (2):209-217. https://doi.org/10.20289/zfdergi.553142.
  • Humphry, J. B., T. C. Daniel, D. R. Edwards & A. N. Sharpley, 2002. A portable rainfall simulator for plot-scale runoff studies. Applied Engineering in Agriculture, 18 (2): 199-204. https://doi. 10.13031/2013.7789.
  • Iramu, E. T., 2012. A Critical Evaluation of the Effects of Plant Extract Formulations Against Two Generalized Insect Pests of Abelmoschus manihot (L.) Medik (Family: Malvaceae). School of Agriculture and Food Sciences, the University of Queensland, (Unpublished) PhD Thesis, Queensland, Australia, 198 pp.
  • Kuhn, N. J., R. B. Bryan & J. Novar, 2003. Seal formation and interrill erosion on smectite-rich Kastanozem from NE Mexico. Catena, 52: 149-169. https://doi. 10.1016/S0341-8162(02)00091-7.
  • Meyer, L. D., 1965. Simulation of rainfall for soil erosion research. Transaction of American Society of Agricultural Engineers, 8: 63-65.
  • MGM, 2019. T. C. Tarım ve Orman Bakanlığı, Meteoroloji Genel Müdürlüğü. http:// www.mgm.gov.tr/veridegerlendirme/il-ve-ilçeleristatistik.aspx. Erişim tarihi: 16.04.2020.
  • Navas, A., F. Alberto, J. Machin & A. Galan, 1990. Design and operation of a rainfall simulator for field studies of runoff and soil erosion. Soil Technology, 3: 385-397. https://doi.org/10.1016/0933-3630(90)90019-Y.
  • Omar, M. A., Z. A. Rahaman & W. R. Ismail, 2014. Sediment and nutrient concentration from different land use and land cover of Bukit Merah Reservoir (BMR) Catchment, Perak, Malaysia. Geografı, 2 (2): 52-65.
  • Petan, S., S. Rusjan, A. Vidmar & M. Mikos, 2010. The rainfall kinetic energy-intensity relationship for rainfall erosivity estimation in the Mediterranean part of Slovenia. Journal of Hydrology, 391: 314-321. https://doi.10.1016/j.jhydrol.2010.07.031.
  • Rosewell, C. J., 1986. Rainfall kinetic energy in eastern Australia. Journal of Climate and Applied Meteorology, 25: 1695-1701. https://doi.org/10.1175/1520-0450(1986)025<1695:RKEIEA>2.0.CO;2
  • Sausa Junior, S. F & E. Q. Siqueira, 2011. Development and Calibration of a Rainfall Simulator for Urban Hydrology Research. 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 11-16 September 2011.
  • Sempere-Torres, D., C. Salles, J. D. Creutin & G. Delrieu, 1992. Quantification of soil detachment by raindrop impact: performance of classical formulae of kinetic energy in Mediterranean storms. Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the Oslo Symposium, August 1992). IAHS Publ., No. 210, 1992.
  • Tossell, R. W, W. T. Dickinson, R. P. Rudra & G. J. Wall, 1987. A portable rainfall simulator. Canadian Agricultural Engineering, 29: 155-162.
  • Uplinger, C. W., 1981. A new formula for raindrop terminal velocity. In: Abstracts of 20th Conference of Radar Meteorology. American Meteorogical Society, Boston, USA, pp. 389-391.
  • Usón, A. & M. C. Ramos, 2001. An improved rainfall erosivity index obtained from experimental interrill soil losses in soils with a Mediterranean climate. Catena, 43: 293-305.
Ege Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1018-8851
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1964
  • Yayıncı: Prof. Dr. Banu YÜCEL
Sayıdaki Diğer Makaleler

Tarımda kullanılan büyük çaplı tavan tipi vantilatörde hava akışının hesaplamalı akışkanlar dinamiği ile incelenmesi

Vedat DEMİR, Tuncay GÜNHAN, Hamdi BİLGEN

Yem bitkileri üretimine yönelik tarımsal desteklerin araştırılması: Desteklerin bölgeler temelinde etkilerine bir bakış

Celal CEVHER, Bülent ALTUNKAYNAK, Yener ATASEVEN, Özdal KÖKSAL, Zeki BAYRAMOĞLU, Gonca GÜL YAVUZ

Kuluçka sırasında sıcağa alıştırma ve fotoperiyodik aydınlatmanın kuluçka performansı, kuluçka süresi, civciv kalitesi ve organ gelişimi üzerindeki etkisi

Tahir SHAH, Sezen ÖZKAN

Van Yüzüncü Yıl Üniversitesi-Ferit Melen Havaalanı karayolu güzergahı örneğinde görsel peyzaj kalite değerlendirilmesi

Nursevil YUCA, Feran AŞUR

Mikro jet yağmurlama sulama başlığında akış özelliklerinin hesaplamalı akışkanlar dinamiği ile incelenmesi

Vedat DEMİR, Hüseyin YÜRDEM, Arzu YAZGI, Tuncay GÜNHAN

Budama atıklarının Clementine mandarini (Citrus reticulata Blanco) mikro element bütçesindeki rolü

Neriman Tuba BARLAS

Ege Üniversitesi öğrencilerinin arı ürünlerine yönelik farkındalığı ve tüketim tercihleri

Zekeriya ONUÇ, Gamze SANER

Farklı biçim yüksekliği ve azot seviyelerinin dev kralotu (Pennisetum hybridum)’nda yem verimi ve kalitesine olan etkileri

Maryam SABERREZAEI, Hakan GEREN

Tüketicilerin organik gıda ürün reklamından etkilenme faktörleri: Iğdır ili örneği

Meryem KONU KADİRHANOĞULLARI, İbrahim Hakkı KADİRHANOĞULLARI, Köksal KARADAŞ

Laboratuvar tipi yağış benzeticisinde kullanılan farklı fulljet başlıkların bazı yağış özellikleri açısından karşılaştırılması

Gokcen YONTER, Houndonougbo Marius HOUNDONOUGBO