Kirlenme sürecindeki İznik Göl suyu ile sulanan tarım toprraklarında mikrobiyolojik aktivitenin değişimi

Bu çalışmada, endüstriyel, evsel ve tarımsal kaynaklı kirleticiler ile kirlenme surecine giren İznik Göl suları ile sulanan tarım arazilerinden toprak örnekleri alınarak, mikrobiyolojik aktivitede sulamadan kaynaklanan bir değişikliğin ortaya çıkıp çıkmadığı araştırılmıştır. Bu amaçla İznik Göl suları ile sulanan Orhangazi ve İznik ilçelerine ait tarım arazilerinden 20 adet toprak örneği sulama öncesi ve sonrası olmak Üzere iki kez alınmıştır. Araştırma sonuçlarına göre; CO2-oluşumu ile dehidrogenaz ve katalaz enzim aktivitelerinin sulama sonrası topraklarında azaldığı fakat proteaz enzim aktivitesi ile mikroorganizma grup sayılarının arttığı belirlenmiştir. İznik Gölü ile sulanan arazilerde mevcut kirliliğin topraklardaki bütün mikrobiyolojik aktiviteyi henüz ciddi bir şekilde etkilemediği saptanmıştır.

Change of microbiological activity in arable soils irigated by İznik Lake waters in pollution proccess

In this paper, soil samples were taken from arable lands irrigated by Lake tznik's water that goes on pollution process, with pollutants such as industrial, domestic and agricultural sources and it was searched whether the microbiological activity in soils depending on irrigation change or not. With this purpose, 20 soil samples before and after irrigation were taken from arable lands irrigated by Lake waters in İznik and Orhangazi districts. According to the results, it was determined that CO2-production and activities of dehydrogenase and catalase decreased in soils taken after irrigation but protease activity and microbial numbers increased. The present pollution in arable lands irrigated by tznik Lake water did not seriously affect all the microbiological activity in soils.

___

  • 1. Anderson,J.P.E., Domsch,K.H., 1978. A Physiological Medhod for The Quantitative Measurement of Microbial Biomass in Soils, Soil Biology and Biochemistry, 10:215-221.
  • 2. Baath,E., 1989. Effects of heavy metals in soil on microbial processes and populations (A review). Water, Air, and Soil Pollution, 47:335-379.
  • 3. Beck,T., 1971. Die Messung der Katalaseaktivitat von Boden, Z. Pflanzenernaehr Bodenkd, 130:68-81.
  • 4. Binghan,F.T., 1982. Boron. Method of soil analysis. Ed:A.L.Page, R.H. Miller, D.R.Keeney, Part 2, A. Society of Agronomy, In. Madison, Wisconsin. USA.
  • 5. Bond,H., Lightheart,B., Shimabuku,R., Russel,L., 1976. Some effects of cadmium on coniferous forest soil and litter microcosms. Soil Sci.121:278-287.
  • 6. Bouyoucos,G.J., 1951. A recalibration of hydrometer for making mechanical analysis of Soil. Agronomy Journal, 43:434-437.
  • 7. Chander,K., Brookes, P.C.,1991. Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam U.K. soil. Soil Biol. Biochem. 23:927-932.
  • 8. Fiedler,H. J., 1973. Methoden der Boden Analyse Band., II., Mikrobiologische Methoden Verl. Theodor Stainkopff, Dresden, 12-15.
  • 9. Friedel,J.K., Langer,T., Siebe,C., Stahr,K., 2000. Effects of long-term waste water irrigation on soil organic matter, soil microbial biomass and its activities in central Mexico. Biology and Fertility of Soils, 31(5):414-421.
  • 10. Grigoryan,K.V., Galstyan,A.S.H., 1979. Effect of irrigation water polluted with industrial waste on the enzymatic activity of soils. Soviet Soil Sci. 11(2):220-228.
  • 11. Hattori,H.,1991. Influence of cadmium on decomposition of glucose and cellulose in soils. Soil Sci. Plant Nutr., 37(1):39-45.
  • 12. Isermeyer,H., 1952. Eine Einfache Methode zur Bestimmung der Karbonate im Boden, Z. Pflanzenern, Düng, Bodenkde, 105-107.
  • 13. Jackson,M.C., 1960. Soil Chemical Analysis. Printice Hall Inc. Englewood Cliffs. N.J.
  • 14. Jenkinson,D.S., Ladd,J.N., 1981. Microbial Biomass in Soil Measurement and Turnover, In Soil Biochemistry, ed: Paul E.A., Ladds J.N., Vol 5, Marcel Dekker, Newyork, 415-471.
  • 15. Ladd,J.N., Butler,J.H.A., 1972. Short-Term Assay of Soil Proteolytic Enzyme Activities using Proteins and Dipeptide Derivates as Substrates, Soil Biology and Biochemistry, 4:19-39.
  • 16. Leita,L., Nobili,M.De, Muhlbachova,G., Mondini,C., Marchiol,L., Zerbi, G.,1995. Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol. Fertil. Soils 19:103-108.
  • 17. Lindsay,W.L., Norvell,W.A., 1978. Development of a DTPA Soil Test for Zn, Fe, Mn and Cd, Soil Science Society America Proceedings, 42:421-428.
  • 18. Lynch,J.M., 1983. Soil Biotechnology. Buttler and Tanner Ltd. Frome and London.
  • 19. McGrath,S.P., Chaudri,A.M., Giller,K.E., 1994. Long-term effects of land application of sewage sludge: soils, microorganisms and plants. In 15th Worl Congress of Soil Science, Acapulco, Mexico.
  • 20. Okur,N., Çengel,M., Okur,B., 1998. Microbial Biomass and Some Enyzme Activities in Arable Soils Irrigated With Heavy Metal-Polluted Gediz River. M.Şefik Yeşilsoy International Symposium on Arid Region Soils. Bildiriler Kitabı, 324-330, Menemen- İzmir.
  • 21. Richard,L.A., 1954. Diagnosis and Improvements Saline and Alkali Soils. I.S.Dept. Agr. Handbook 60.
  • 22. Thalmann,A., 1968. Zur Methodik der Bestimmung der Dehydrogenaseaktivitaet im Boden Mittens Triphenyltetrazoliumchlorid (TTC), Landwirtsch. Forsch, 21:249-258.
  • 23. Timoshenko,A.G., Kotelev,V.V., Toma,S.I., 1964. Significance of microelements in the interrelationships of soil and plant microorganisms. Soils and Fertilizers, 29(2):1261.
  • 24. Wilke,B.M., 1989. Long-term effects of different inorganic pollutants on nitrogen transformations in a sandy cambisol. Biol. Fertil. Soils, 7:254-258.
  • 25. Zdenek, F., Shinjiro,K., Berthelin,J., 2000. Distribution of microorganisms, biomass ATP, and enzyme activities in organic and mineral particles of a long- term wastewater irrigated soil. J. of Plant Nutr. and Soil Sci., 163(2):143-150.
  • 26. Zibilske,L.M., Wagner,G.H., 1982. Bacterial growth and fungal genera distribution in soil amended with sewage sludge containing cadmium, chromium, and copper. Soil Science, 134(6):364-370.