Manyetik rezonans görüntülemenin ağız diş ve çene radyolojisinde yeri ve ultra yüksek alan manyetik rezonans görüntüleme

Özellikle yumuşak dokuların görüntülenmesinde kullanılan manyetik rezonans görüntüleme, temporomandibular eklem diskinin incelenmesi, baş-boyun bölgesinde yumuşak doku kaynaklı patolojilerin görüntülenmesi, oral mukozayla ilişkili malignitelerin teşhisi gibi durumlarda kullanılmaktadır. Ultra yüksek alan manyetik rezonans görüntüleme tekniği ise günümüzde daha çok araştırma amaçlı kullanılan sistemler olup diş hekimliğini ilgilendiren çalışmalar da yapılmaktadır. Bu çalışmanın amacı; manyetik rezonans görüntülemenin diş hekimliğindeki kullanım alanlarını yapılan güncel çalışmalar eşliğinde sunmak ve ultra yüksek alan manyetik rezonans görüntülemenin diş hekimliğindeki potensiyel kullanım alanlarını incelemektir

Magnetic resonance imaging in oral and maxillofacial radiology and ultra high field magnetic resonance imaging

In particular, magnetic resonance imaging is used in the imaging of soft tissues, examination of the temporomandibular joint disc, imaging of soft tissue associated pathologies in the head and neck region, and diagnosis of malignancies related with oral mucosa. Ultra high field magnetic resonance imaging techniques are currently used for research, and studies involving dentistry are also being carried out. The purpose of this study is; to present the use areas of magnetic resonance imaging in dentistry in the context of current studies and to examine the use potential areas of ultra high field magnetic resonance imaging in dentistry.

___

  • 1. Klatkiewicz T, Gawriołek K, Pobudek Radzikowska M, Czajka-Jakubowska A. Ultrasonography in the Diagnosis of Temporomandibular Disorders: A MetaAnalysis. Med Sci Monit. 2018 Feb 8;24:812-817.
  • 2. Grossmann E, Poluha RL, Iwaki LCV, Santana RG, Filho LI. Predictors of arthrocentesis outcome on joint effusion in patients with disk displacement without reduction. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018 Apr;125(4):382-388.
  • 3. Apajalahti S, Kelppe J, Kontio R, Hagström J. Imaging characteristics of ameloblastomas and diagnostic value of computed tomography and magnetic resonance imaging in a series of 26 patients. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015 Aug;120(2):e118-30.
  • 4. Ogura I, Sasaki Y, Oda T, Sue M, Hayama K. Magnetic Resonance Sialography and Salivary Gland Scintigraphy of Parotid Glands in Sjögren’s Syndrome. Chin J Dent Res. 2018;21(1):63-68.
  • 5. Adisen MZ, Okkesim A, Misirlioglu M, Yilmaz S. Does sleep bruxism affect masticatory muscles volume and occlusal force distribution in young subjects? A preliminary study. Cranio. 2018 Mar 20:1-7.
  • 6. C. Westbrook and C. Kaut, MRI in Practice, 2nd Edition, Blackwell Publishing Company, Oxford, UK, 1998.
  • 7. Moser E. Ultra-high-field magnetic resonance: Why and when? World J Radiol. 2010 Jan 28;2(1):37-40.
  • 8. Sclocco R, Beissner F, Bianciardi M, Polimeni JR, Napadow V. Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage. 2018 Mar;168:412-426.
  • 9. Gamoh S, Wato M, Akiyama H ve ark. The role of computed tomography and magnetic resonance imaging in diagnosing clear cell ameloblastoma: A case report. Oncol Lett. 2017 Dec;14(6):7257-7261.
  • 10. Vargas MI, Martelli P, Xin L ve ark. Clinical Neuroimaging Using 7 T MRI: Challenges and Prospects. J Neuroimaging. 2018 Jan;28(1):5-13.
  • 11. Gallichan D. Diffusion MRI of the human brain at ultra-high field (UHF): A review. Neuroimage. 2018 Mar;168:172-180.
  • 12. Bittner RC, Felix R. Magnetic resonance (MR) imaging of the chest: state-of-the-art. Eur Respir J 1998; 11: 1392-404.
  • 13. Müller NL. Computed tomography and magnetic resonance imaging: past, present and future. Eur Respir J 2002;19:Suppl. 35:3s-12s.
  • 14. De Coene B, Hajnal JV, Gatehouse P ve ark. MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 1992;13:1555-64.
  • 15. In MH, Posnansky O, Beall EB ve ark. Distortion correction in EPI using an extended PSF method with a reversed phase gradient approach. PLoS One 2015;10:e0116320.
  • 16. Schweser F, Deistung A, Lehr BW ve ark. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys 2010;37:5165- 78.
  • 17. Bian W, Banerjee S, Kelly DA ve ark. Simultaneous imaging of radiation-induced cerebral microbleeds, arteries and veins, using a multiple gradient echo sequence at 7 Tesla. JMagn Reson Imaging 2015;42:269-79.
  • 18. Harteveld AA, De Cocker LJ, Dieleman N ve ark. High-resolution postcontrast time-of-flight MR angiography of intracranial perforators at 7.0 Tesla. PLoS One 2015;10:e0121051.
  • 19. Mekle R, Mlynarik V, Gambarota G ve ark. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn Reson Med 2009;61:1279-85.
  • 20. van der Zwaag W, Francis S, Head K ve ark. fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 2009;47:1425- 34.
  • 21. van der Zwaag W, Schäfer A, Marques JP, Turner R, Trampel R. Recent applications of UHF-MRI in the study of human brain function and structure: a review. NMR Biomed. 2016 Sep;29(9):1274-88.
  • 22. Liu MQ, Lei J, Han JH, Yap AU, Fu KY. Metrical analysis of disc-condyle relation with different splint treatment positions in patients with TMJ disc displacement. J Appl Oral Sci. 2017 SepOct;25(5):483-489.
  • 23. Haley DP, Schiffman EL, Lindgren BR ve ark. the relationship between clinical and MRI findings in patients with unilateral temporomandibular joint pain. J Am Dent Assoc 2001; 132:476-81.
  • 24. Thomas N, Harper DE, Aronovich S. Do signs of an effusion of the temporomandibular joint on magnetic resonance imaging correlate with signs and symptoms of temporomandibular joint disease? Br J Oral Maxillofac Surg. 2018 Feb;56(2):96-100.
  • 25. Ohkubo M, Higaki T, Nishikawa K ve ark. Optimization of parameter settings in cine-MR imaging for diagnosis of swallowing. Bull Tokyo Dent Coll. 2014;55(3):131-7.
  • 26. Yılmaz S. To see bruxism: a functional MRI study. Dentomaxillofac Radiol. 2015;44(7):20150019.
  • 27. Makiguchi T, Yokoo S, Miyazaki H ve ark. Treatment strategy of a huge ameloblastic carcinoma. J Craniofac Surg. 2013 Jan;24(1):287-90.
  • 28. Devenney-Cakir B, Dunfee B, Subramaniam R ve ark. Ameloblastic carcinoma of the mandible with metastasis to the skull and lung: advanced imaging appearance including computed tomography, magnetic resonance imaging and positron emission tomography computed tomography. Dentomaxillofac Radiol. 2010 Oct;39(7):449-53.
  • 29. Faraji F, Coquia SF, Wenderoth MB ve ark. Evaluating oropharyngeal carcinoma with transcervical ultrasound, CT, and MRI. Oral Oncol. 2018 Mar;78:177-185.
  • 30. Fujita M, Matsuzaki H, Yanagi Y ve ark. Diagnostic value of MRI for odontogenic tumours. Dentomaxillofac Radiol. 2013;42(5):20120265.
  • 31. Sumi M, Ichikawa Y, Katayama I, Tashiro S, Nakamura T. Diffusion-weighted MR imaging of ameloblastomas and keratocystic odontogenic tumors: differentiation by apparent diffusion coefficients of cystic lesions. AJNR Am J Neuroradiol. 2008 Nov;29(10):1897-901.
  • 32. Mazzawi E, AbuEl-naaj I, Ghantous Y ve ark. The Clinical Significant of Pre-Surgical Imaging in Oral Squamous Cell Carcinoma Compared with Lymph Node Status: a comparative retrospective study. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology (2017).
  • 33. Konouchi H, Asaumi J, Yanagi Y ve ark. Usefulness of contrast enhanced-MRI in the diagnosis of unicystic ameloblastoma. Oral Oncol. 2006 May;42(5):481-6.
  • 34. Noij DP, Jagesar VA, de Graaf P ve ark. Detection of residual head and neck squamous cell carcinoma after (chemo)radiotherapy: a pilot study assessing the value of diffusion-weighted magnetic resonance imaging as an adjunct to PET-CT using 18F-FDG. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017 Sep;124(3):296-305.
  • 35. Matsuda S, Yoshimura H, Kondo S, Sano K. Temporomandibular dislocation caused by pancreatic cancer metastasis: A case report. Oncol Lett. 2017 Nov;14(5):6053-6058.
  • 36. Lee JY, Suh DC. Visualization of Soft Tissue Venous Malformations of Head and Neck with 4D Flow Magnetic Resonance Imaging. Neurointervention. 2017 Sep;12(2):110-115.
  • 37. Vaughan JT, Garwood M, Collins CM ve ark. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med. 2001 Jul;46(1):24-30.
  • 38. Keuken MC, Isaacs BR, Trampel R, van der Zwaag W, Forstmann BU. Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging. Brain Topogr (2018).
  • 39. Krug R, Carballido-Gamio J, Banerjee S ve ark. In vivo bone and cartilage MRI using fully-balanced steady-state free-precession at 7 tesla. Magn Reson Med. 2007 Dec;58(6):1294-8.
  • 40. Zaiss M, Schuppert M, Deshmane A ve ark. Chemical exchange saturation transfer MRI contrast in the human brain at 9.4 T. Neuroimage. 2018 Oct 1;179:144-155.
  • 41. Plantinga BR, Temel Y, Roebroeck A ve ark. Ultrahigh field magnetic resonance imaging of the basal ganglia and related structures. Front Hum Neurosci 2014;8:876.
  • 42. Alison N Pruzan, Audrey E Kaufman, Claudia Calcagno, Yu Zhou, Zahi A Fayad, Venkatesh Mani. Feasibility of imaging superficial palmar arch using micro-ultrasound, 7T and 3T magnetic resonance imaging. World J Radiol. 2017 Feb 28; 9(2): 79–84.
  • 43. Herrmann T, Mallow J, Plaumann M ve ark. The Travelling-Wave Primate System: A New Solution for Magnetic Resonance Imaging of Macaque Monkeys at 7 Tesla Ultra-High Field. PLoS One. 2015 Jun 11;10(6):e0129371.
  • 44. Santini T, Kim J, Wood S ve ark. A new RF transmit coil for foot and ankle imaging at 7T MRI. Magn Reson Imaging. 2018 Jan;45:1-6.
  • 45. Dengler NF, Madai VI, Wuerfel J ve ark. Moyamoya Vessel Pathology Imaged by Ultra-High-Field Magnetic Resonance Imaging at 7.0 T. J Stroke Cerebrovasc Dis. 2016 Jun;25(6):1544-51.
  • 46. Lindner T, Klose R, Streckenbach F ve ark. Morphologic and biometric evaluation of chick embryo eyes in ovo using 7 Tesla MRI. Sci Rep. 2017 Jun 1;7(1):2647.
  • 47. Thylur DS, Jacobs RE, Go JL, Toga AW, Niparko JK. Ultra-High-Field Magnetic Resonance Imaging of the Human Inner Ear at 11.7 Tesla. Otol Neurotol. 2017 Jan;38(1):133-138.
  • 48. Noureddine Y, Bitz AK, Ladd ME ve ark. Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study. MAGMA. 2015 Dec;28(6):577- 90.
  • 49. Oriso K, Kobayashi T, Sasaki M, Uwano I, Kihara H, Kondo H. Impact of the Static and Radiofrequency Magnetic Fields Produced by a 7T MR Imager on Metallic Dental Materials. Magn Reson Med Sci. 2016;15(1):26-33.
  • 50. Yilmaz S, Adisen MZ. Ex Vivo Mercury Release from Dental Amalgam after 7.0-T and 1.5-T MRI. Radiology. 2018 Sep;288(3):799-803.
Ege Üniversitesi Diş Hekimliği Fakültesi-Cover
  • ISSN: 1302-7476
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1979
  • Yayıncı: Ege Üniversitesi