Farklı İçeriklerdeki Cam İyonomer Materyallerin Flor Salım ve Tekrar Yüklenebilme Özelliklerinin Değerlendirilmesi

GİRİŞ ve AMAÇ: Çalışmanın amacı, farklı içeriklerdeki cam iyonomer materyallerin flor salım ve tekrar yüklenebilme özelliklerinin değerlendirilmesidir. YÖNTEM ve GEREÇLER: Çalışmada farklı içeriklerdeki cam iyonomer esaslı 3 adet fissür örtücü materyal (GC Fuji Triage, GC Fuji VII EP, GCP Glass Seal) kullanıldı. Disk şeklinde hazırlanan 30 adet örneğin herbiri (8.0x2.5 mm) başlangıç yaşlandırması için 20 ml deiyonize su bulunan kaplara yerleştirilerek 49 gün bekletildi. Örnekler, 1, 2, 4, 8, 15, 22, 29, 36, 43 ve 49. günlerde dijital iyon analiz cihazı kullanılarak flor salım miktarları açısından ölçüldü. 49. günde örneklere % 1.23’lük asidüle fosfat florid (APF) jel ile yükleme yapıldı. Flor salımının ölçümü yükleme işleminin ardından aynı zaman aralıklarında tekrarlandı. İstatiksel analiz için non-parametrik Kruskal Wallis ve Mann-Whitney U testi kullanıldı, Bonferroni düzeltmesi yapıldı (α=0.016). Zamanlar arası karşılaştırmalar ise Friedman testi ve Wilcoxon testi ile gerçekleştirildi, Bonferroni düzeltmesi uygulandı (α=0.005). BULGULAR: Tüm materyaller içinde en yüksek flor salım değerleri 1. gün örneklerinde gözlenirken, bu değerler zamana bağlı olarak azalmıştır. GCP Glass Seal 1. gün en yüksek flor salımını gerçekleştirmiş, bu materyalden elde edilen salım değerleri GC Fuji VII EP grubu ile istatistiksel olarak anlamlı derecede farklı bulunmuştur (p=0.000). APF flor jeli ile tekrar yüklemenin materyallerin flor salımı değerlerini bir miktar arttırdığı, ancak zamanla salınan flor miktarında materyal türüne bağlı olarak azalma gerçekleştiği belirlenmiştir. TARTIŞMA ve SONUÇ: Çalışmadaki tüm materyaller çalışma süresi boyunca flor salımı yapmıştır ve flor preparatı ile tekrar yüklenme özellikleri bulunmaktadır. Konvansiyonel cam iyonomer materyale göre; floroapatit/hidroksiapatit ilavesi ile zenginleştirilmiş cam iyonomer materyal benzer, kazein fosfopeptit amorföz kalsiyum fosfat ilave edilmiş cam iyonomer materyal ise daha az flor salımı gerçekleştirmiştir.

Evaluation of Fluoride Release and Recharge Ability of The Different Content Glass Ionomer Materials

INTRODUCTION: The aim of the study was to evaluate the fluoride release and recharge ability of various glass ionomer materials. METHODS: In this study, three different glass ionomer materials (GC Fuji Triage, GC Fuji VII EP, GCP Glass Seal) were used. Thirty disc-shaped specimens (8.0x2.5 mm) were immersed in deionized water for initial aging during 49 days. The samples were measured on days 1, 2, 4, 8, 15, 22, 29, 36, 43 and 49 by using a digital ion analyzer. The specimens were immersed in 1.23% acidulated phosphate fluoride (APF) gel on the 49th day. After recharging, fluoride release measurements were repeated in the same intervals. The results were statistically analysed using non-parametric Kruskal Wallis and Mann Whitney U with Bonferroni correction tests (a=0.016). Friedman test, Wilcoxon test and Bonferroni correction were used for intertemporal comparisons (a=0.005). RESULTS: The highest fluoride release for all materials were observed at the first day samples, this value decreased depending on the time. GCP Glass Seal released the most fluoride on the first day and fluoride release values from this material were found statistically significantly different from GC Fuji VII EP (p=0.000). It has been detected that, recharging with APF fluoride gel increased the fluoride release of the materials, however, the fluoride release levels decreased within time depending on the material type. DISCUSSION AND CONCLUSION: All materials released fluoride during the study period and have ability of recharging. In comprasion to conventional glass ionomer material; while the fluoroapatite/hydroxyapatite added glass ionomer material released similar fluoride, casein phosphopeptide-amorphous calcium phosphate added glass ionomer material released less.

___

  • Ahovuo-Saloranta A, Hiiri A, Nordblad A, Makela M, Worthington HV. Pit and fissure sealants for preventing dental decay in the permanent teeth of children and adolescents. Cochrane Database Syst Rev 2008:CD001830.
  • Beauchamp J, Caufield PW, Crall JJ, Donly K, Feigal R, Gooch B, et al. Evidence-based clinical recommendations for the use of pit-and-fissure sealants: a report of the American Dental Association Council on Scientific Affairs. J Am Dent Assoc 2008;139:257-68.
  • Pit and fissure sealants. J Am Dent Assoc 1971;82:1101-3.
  • Lygidakis NA, Oulis KI, Christodoulidis A. Evaluation of fissure sealants retention following four different isolation and surface preparation techniques: four years clinical trial. J Clin Pediatr Dent 1994;19:23-5.
  • Mejare I, Mjor IA. Glass ionomer and resin-based fissure sealants: a clinical study. Scand J Dent Res 1990;98:345-50.
  • Davidovich E, Weiss E, Fuks AB, Beyth N. Surface antibacterial properties of glass ionomer cements used in atraumatic restorative treatment. J Am Dent Assoc 2007;138:1347-52.
  • Modena KC, Casas-Apayco LC, Atta MT, Costa CA, Hebling J, Sipert CR, et al. Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci 2009;17:544-54.
  • Aranda M, Garcia-Godoy F. Clinical evaluation of the retention and wear of a light-cured pit and fissure glass ionomer sealant. J Clin Pediatr Dent 1995;19:273-7.
  • Chen X, Du MQ, Fan MW, Mulder J, Huysmans MC, Frencken JE. Caries-preventive effect of sealants produced with altered glass-ionomer materials, after 2 years. Dent Mater 2012;28:554-60.
  • Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater 2008;4:432-40.
  • Zalizniak I, Palamara JE, Wong RH, Cochrane NJ, Burrow MF, Reynolds EC. Ion release and physical properties of CPP-ACP modified GIC in acid solutions. J Dent 2013;41:449-54.
  • Cochrane NJ, Saranathan S, Cai F, Cross KJ, Reynolds EC. Enamel subsurface lesion remineralisation with casein phosphopeptide stabilised solutions of calcium, phosphate and fluoride. Caries Res 2008;42:88-97.
  • Mazzaoui SA, Burrow MF, Tyas MJ, Dashper SG, Eakins D, Reynolds EC. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement. J Dent Res 2003;82:914-8.
  • Thepyou R, Chanmitkul W, Thanatvarakorn O, Hamba H, Chob-Isara W, Trairatvorakul C, et al. Casein phosphopeptide-amorphous calcium phosphate and glass ionomer show distinct effects in the remineralization of proximal artificial caries lesion in situ. Dent Mater J 2013;32:648-53.
  • Reynolds EC, Cai F, Cochrane NJ, Shen P, Walker GD, Morgan MV, et al. Fluoride and casein phosphopeptide-amorphous calcium phosphate. J Dent Res 2008;87:344-8.
  • Reynolds EC, Cai F, Shen P, Walker GD. Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugarfree chewing gum. J Dent Res 2003;82:206-11.
  • Bansal R, Bansal T. A Comparative Evaluation of the Amount of Fluoride Release and Re-Release after Recharging from Aesthetic Restorative Materials: An in vitro Study. J Clin Diagn Res 2015;9:ZC11-4.
  • Garcez RM, Buzalaf MA, de Araujo PA. Fluoride release of six restorative materials in water and pHcycling solutions. J Appl Oral Sci 2007;15:406-11.
  • Preston AJ, Agalamanyi EA, Higham SM, Mair LH. The recharge of esthetic dental restorative materials with fluoride in vitro-two years results. Dent Mater 2003;19:32-7.
  • Strother JM, Kohn DH, Dennison JB, Clarkson BH. Fluoride release and re-uptake in direct tooth colored restorative materials. Dent Mater 1998;14:129-36.
  • Karantakis P, Helvatjoglou-Antoniades M, Theodoridou-Pahini S, Papadogiannis Y. Fluoride release from three glass ionomers, a compomer, and a composite resin in water, artificial saliva, and lactic acid. Oper Dent 2000;25:20-5.
  • van Rijkom H, Ruben J, Vieira A, Huysmans MC, Truin GJ, Mulder J. Erosion-inhibiting effect of sodium fluoride and titanium tetrafluoride treatment in vitro. Eur J Oral Sci 2003;111:253-7.
  • American Academy of Pediatric D. Guideline on fluoride therapy. Pediatr Dent 2014;35:E165-8.
  • el-Badrawy WA, McComb D, Wood RE. Effect of home-use fluoride gels on glass ionomer and composite restorations. Dent Mater 1993;9:63-7.
  • Maruo IT, Godoy-Bezerra J, Saga AY, Tanaka OM, Maruo H, Camargo ES. Effect of etching and lightcuring time on the shear bond strength of a resinmodified glass ionomer cement. Braz Dent J 2010;21:533-7.
  • Vermeersch G, Leloup G, Vreven J. Fluoride release from glass-ionomer cements, compomers and resin composites. J Oral Rehabil 2001;28:26-32.
  • Dionysopoulos D, Koliniotou-Koumpia E, Helvatzoglou-Antoniades M, Kotsanos N. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives (Retracted article. See vol. 34, pg. 410, 2015). Dental Materials Journal 2013;32:296-304.
  • Setty JV, Singh S, Subba Reddy VV. Comparison of the effect of topical fluorides on the commercially available conventional glass ionomers, resin modified glass ionomers and polyacid modified composite resins--an in vitro study. J Indian Soc Pedod Prev Dent 2003;21:55-69.
  • Dhull KS, Nandlal B. Comparative evaluation of fluoride release from PRG-composites and compomer on application of topical fluoride: an invitro study. J Indian Soc Pedod Prev Dent 2009;27:27-32.
  • Attar N, Turgut MD. Fluoride release and uptake capacities of fluoride-releasing restorative materials. Oper Dent 2003;28:395-402.
  • De Moor RJ, Verbeeck RM, De Maeyer EA. Fluoride release profiles of restorative glass ionomer formulations. Dent Mater 1996;12:88-95.
  • Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 2007;23:343-62.
  • Frost PM. An audit on the placement and replacement of restorations in a general dental practice. Prim Dent Care 2002;9:31-6.
  • Mousavinasab SM, Meyers I. Fluoride release by glass ionomer cements, compomer and giomer. Dent Res J (Isfahan) 2009;6:75-81.
  • Eichmiller FC, Marjenhoff WA. Fluoride-releasing dental restorative materials. Oper Dent 1998;23:218- 28.
  • Ghajari MF, Torabzadeh H, Safavi N, Sohrabi A, Ardakani FF. Fluoride release from three glass ionomers after exposure to sodium fluoride and acidulated phosphate fluoride gels. Dent Res J (Isfahan) 2014;11:604-9.
  • Ananda SR, Mythri H. A comparative study of fluoride release from two different sealants. J Clin Exp Dent 2014;6:e497-501.
  • Zainuddin N, Karpukhina N, Law RV, Hill RG. Characterisation of a remineralising Glass Carbomer(R) ionomer cement by MAS-NMR spectroscopy. Dent Mater 2012;28:1051-8.
  • Cehreli SB, Tirali RE, Yalcinkaya Z, Cehreli ZC. Microleakage of newly developed glass carbomer cement in primary teeth. Eur J Dent 2013;7:15-21.
  • Crisp S, Lewis BG, Wilson AD. Characterization of glass--ionomer cements. 6. A study of erosion and water absorption in both neutral and acidic media. J Dent 1980;8:68-74
Ege Üniversitesi Diş Hekimliği Fakültesi-Cover
  • ISSN: 1302-7476
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1979
  • Yayıncı: Ege Üniversitesi