Türkiye'de Standardize Yağış Evapotranspirasyon İndisine (SPEI) Göre Kuraklıkların Zamansal Değişimi (1951-2022)

Bu çalışmada, Türkiye’de Standardize Yağış Evapotranspirasyon İndisine (SPEI) göre 3, 6 ve 12 aylık zaman ölçeklerinde kuraklıkların 1951–2022 dönemindeki zamansal değişimi incelenmiştir. Türkiye’yi temsil eden 102 grid verisinin ortalamasına göre yapılan analizler, su yılında ve tüm mevsimlerde incelenen dönemde SPEI değerlerinin azalma eğilimi gösterdiğini ortaya koymuştur. Bu durum Türkiye’de son 72 yılda SPEI değerlerinde "normal" sınıftan "orta ve şiddetli kurak" sınıflara doğru bir kayma olduğunu göstermiştir. Özellikle 1990’lı yılların sonlarından itibaren daha şiddetli ve uzun meteorolojik, tarımsal ve hidrolojik kuraklıklar gözlenmeye başlanmıştır. Türkiye ortalamasına göre 1951-2022 döneminde en şiddetli ve uzun kuraklıklar SPEI 3, 6 ve 12 zaman ölçeklerinde 2020-2021 su yılına aittir. SPEI-12 esas alındığında, 2020-2021 su yılında, Aralık 2020-Kasım 2021 tarihleri arasında birbirini izleyen 12 ay boyunca “şiddetli kurak” koşullar devam etmiş, aynı dönem içinde 4 ayda ise “ekstrem kurak” koşullar gözlenmiştir. Türkiye’de mevsimlik ortalamalara göre SPEI değerlerinin zamansal değişimi incelendiğinde, tüm mevsimlerde daha kurak koşullara kayma eğiliminin gözlendiği ancak bu eğilimin yaz ve sonbahar mevsimlerinde daha kuvvetli olduğu görülmektedir. Yaz mevsiminde SPEI-3 değerleri basit doğrusal regresyon analizine (Sen’in eğim değerine) göre son 72 yılda 0.001 düzeyinde istatistiki olarak anlamlı olmak üzere -1.02 (-1.03) azalma eğilimi göstermiştir. Bu durum son 72 yılda Türkiye’de yaz ve sonbahar mevsimlerinde meteorolojik ve tarımsal kuraklıkların arttığının göstergesidir. Yağış yanında evapotranspirasyon verilerinin de kullanıldığı SPEI yöntemi, Türkiye’de özellikle son 20 yılda daha belirgin olmak üzere indis değerlerindeki azalma eğiliminden sadece yüksek yağış değişkenliğinin sorumlu olmadığını, yükselen hava sıcaklıkları ve artan buharlaşma/terleme oranlarının da kuraklıkların şiddetlenmesi ve kurak dönemlerin uzamasına katkı sunduğunu göstermektedir.

Temporal variation of droughts according to Standardized Precipitation Evapotranspiration Index (SPEI) in Türkiye (1951-2022)

In this study, the temporal changes in droughts in Türkiye were investigated based on the Standardized Precipitation Evapotranspiration Index (SPEI) for 3, 6, and 12-month time scales during the period of 1951-2022. The analyses, conducted using the average of 102 grid data representing Türkiye, revealed a decreasing trend in SPEI values throughout the hydrological year and all seasons. This indicates a shift in SPEI values from the "normal" class to "moderate and severe drought" classes over the past 72 years in Türkiye. Since the late 1990s, more severe and prolonged meteorological, agricultural, and hydrological droughts have been observed. The most severe and prolonged droughts in Türkiye during the period of 1951-2022, based on SPEI 3, 6, and 12-month time scales, occurred in the water year 2020-2021. Specifically, considering SPEI-12, "severe drought" conditions persisted for consecutive 12 months from December 2020 to November 2021, with "extreme drought" conditions observed for 4 months within the same period. When the temporal changes of SPEI values were examined according to seasonal averages in Türkiye, a tendency towards drier conditions was observed in all seasons, with a stronger tendency noticed in the summer and autumn seasons. In the summer season, SPEI-3 values showed a statistically significant decreasing trend of -1.02 (-1.03) at the 0.001 level based on simple linear regression analysis (Sen's slope) over the past 72 years. This indicates an increase in meteorological and agricultural droughts during the summer and autumn seasons in Türkiye over the past 72 years. The use of both precipitation and evapotranspiration data in the SPEI method demonstrated that the decreasing trend in index values, particularly more prominent in the last 20 years in Türkiye, cannot be solely attributed to high precipitation variability. This also suggests that rising temperatures and increasing evaporation/transpiration rates contribute to the intensification of droughts and the extension of dry periods.

___

  • Akbaş, A. (2014). Türkiye Üzerindeki Önemli Kurak Yıllar. Coğrafi Bilimler Dergisi 12 (2): 101-118.
  • Cammalleri, C., Naumann, G., Mentaschi, L., Formetta, G., Forzieri, G., Gosling, S., Bisselink, B., De Roo, A., Feyen, L.. (2020). Global warming and drought impacts in the EU. Publications Office of the European Union, Luxembourg.
  • Chiang, F., Mazdiyasni, O., Agha Kouchak, A. (2021). Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature Communications, 12(1): 2754.
  • Çamalan, G., Akgündüz, A.S., Ayvacı, H., Çetin, S., Arabacı, H., Coşkun, M. (2017). SPEI indisine göre Türkiye geneli kuraklık değişim ve eğilim projeksiyonları. IV. Türkiye İklim Değişikliği Kongresi, TİKDEK 5-7 Temmuz, İstanbul.
  • Dabanlı, İ., Mishra, A. K., Şen, Z. (2017). Long-term spatio-temporal drought variability in Turkey. Journal of Hydrology, 552: 779-792.
  • Eriş, E., Çavuş, Y., Aksoy, H., Burgan, H. I., Aksu, H., Boyacıoğlu, H. (2020). Spatiotemporal analysis of meteorological drought over Kucuk Menderes River Basin in the Aegean Region of Turkey. Theoretical and Applied Climatology, 142(3-4): 1515-1530.
  • FAO. (2017). Drought and Agriculture. http://www.fao.org/3/i7378e/i7378e.pdf
  • Güler, H., Erlat, E. (2023). Türkiye’de 1950-2022 döneminde ortalama hava sıcaklıklarında gözlenen değişim ve eğilimler. Ege Coğrafya Dergisi, 32(1): 1-17.
  • Jamal, R., Hadi, S. J., Tombul, M. (2022). The Trends of the Standardized Precipitation and Evapotranspiration Index (SPEI) in Turkey. Geography and Natural Resources, 43(1): 87-95.
  • Huang, J., Ji, M., Xie, Y., Wang, S., He, Y., Ran, J. (2016). Global semi-arid climate change over last 60 years. Climate Dynamics, 46 (3–4): 1131–1150.
  • Kurnaz, L. (2014). Drought in Turkey; İstanbul Policy Center Sabancı Üniversitesi: İstanbul, Turkey.
  • Lionello, P., Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Regional Environmental Change 18: 1481–1493.
  • Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., Vrac, M. (2019). Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013). Environmental Research Letters, 14(9), 094006.
  • Mishra, A. K., Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1-2): 202-216.
  • Önol, B., Ünal, Y. S. (2014). Assessment of climate change simulations over climate zones of Turkey. Regional Environmental Change, 14(5): 1921–1935.
  • Patel, K. (2021). Turkey Experiences Intense Drought. NASA Earth Observatory. Available online: https://earthobservatory.nasa.gov/images/147811/turkey-experiences-intense-drought.
  • Pettitt, A. N. (1979). A non‐parametric approach to the change‐point problem. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(2): 126-135.
  • Potop, V., Boroneanţ, C., Možný, M., Štěpánek, P., Skalák, P. (2014). Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and Applied Climatology, 115: 563-581.
  • Sahour, H., Vazifedan, M., Alshehri, F. (2020). Aridity trends in the Middle East and adjacent areas. Theoretical and Applied Climatology, 142(3–4), 1039–1054.
  • Seager, R., Osborn, T. J., Kushnir, Y., Simpson, I. R., Nakamura, J., Liu, H. (2019) Climate variability and change of Mediterranean-type climates. Journal of Climate, 32(10):2887-2915.
  • Spinoni, J., Barbosa, P., Cherlet, M., Forzieri, G., McCormick, N., Naumann, G., Vogt, J. V., Dosio, A. (2021). How will the progressive global increase of arid areas affect population and land-use in the 21st century? Global and Planetary Change, 205(103597), 103597.
  • Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324): 1379–1389.
  • Sneyers, R. (1990). On the Statistical Analysis of Series of Observations. WMO Technical Note 43, World Meteorological Organization, Geneva.
  • SPEI Global Drought Monitor (2023). https://spei.csic.es/map/maps.html#months=1#month=5#year=2023
  • Şen, B., Topcu, S., Türkeș, M., Sen, B., Warner, J. F. (2012) Projecting climate change, drought conditions and crop productivity in Turkey. Climate Research, 52: 175–191.
  • Şimşek O., Yıldırım M., Gördebil, N. (2015). 2013–2014 tarım yılı kuraklık analizi. Meteoroloji Genel Müdürlüğü, Araştırma Dairesi Başkanlığı.
  • Topçu, E. (2022). Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach. Natural Hazards, 112: 697–723.
  • Türkeş, M., Erlat, E. (2005). Climatological responses of winter precipitation in Turkey to variability of the North Atlantic Oscillation during the period 1930–2001. Theoretical and Applied Climatology, 81: 45-69.
  • Türkeş, M., Tatlı, H. (2009). Use of the standardized precipitation index (SPI) and a modified SPI for shaping the drought probabilities over Turkey. International Journal of Climatology, 29: 2270–2282.
  • Türkeş, M., Tatlı, H. (2010). Kuraklık ve yağış etkinliği indislerinin çölleşmenin belirlenmesi, nitelenmesi ve izlenmesindeki rolü. Çölleşme ile Mücadele Sempozyumu Tebliğler Kitabı: 245-263. T.C. Çevre ve Orman Bakanlığı, Çorum.
  • Türkeş, M. (2013). İklim Verileri Kullanılarak Türkiye’nin Çölleşme Haritası Dokumanı Hazırlanması Raporu. Birinci Baskı, T.C. Orman ve Su İşleri Bakanlığı, Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü Yayını, ISBN: 978-6054610-51-8, 57p, Ankara
  • Türkeş, M. (2020). Climate and drought in Turkey. (N. B. Harmancioglu, D. Altinbilek (Editör), Water Resources of Turkey, World Water Resources 2: 85-125, Springer.
  • Türkeş, M., Turp, M. T., An, N., Özturk, T., Kurnaz, M. L. (2020). Impacts of climate change on precipitation climatology and variability in Turkey. Water Resources of Turkey, 467-491.
  • Ullah, S., You, Q., Sachindra, D. A., Nowosad, M., Ullah, W., Bhatti, A. S., Jin, Z., Ali, A. (2022). Spatiotemporal changes in global aridity in terms of multiple aridity indices: An assessment based on the CRU data. Atmospheric Research, 268(105998), 105998.
  • Vautard, R., Gobiet, A., Sobolowski, S., Kjellström, E., Stegehuis, A., Watkiss, P., Mendlik, T., Landgren, O., Nikulin G., Teichmann, C., Jacob, D. (2014).The European climate under a 2 °C global warming. Environmental Research Letters 9, 034006.
  • Vicente-Serrano, S. M., López-Moreno, J. I. (2005). Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrology and Earth System Sciences, 9(5): 523-533.
  • Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I. (2010). Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23: 1696–1718.
  • Vogel, J., Paton, E., Aich, V., Bronstert, A. (2021). Increasing compound warm spells and droughts in the Mediterranean Basin. Weather and Climate Extremes, 32, 100312.
  • Yeşilköy, S., Şaylan, L. (2022). Spatial and temporal drought projections of northwestern Turkey. Theoretical and Applied Climatology, 149(1-2): 1-14.
  • Yihdego, Y., Vaheddoost, B., Al-Weshah, R. A. (2019). Drought indices and indicators revisited. Arabian Journal of Geosciences, 12: 1-12.
  • WHO. (2021). Drought Overview. WHO website. https://www.who.int/healthtopics/drought#