Genetic disorders associated with neonatal jaundice

Genetic disorders associated with neonatal jaundice

Abstract. Neonatal jaundice is very common in newborn infants. Although it is often a natural and transitional condition, some infants develop severe hyperbilirubinemia, in which unconjugated bilirubin in the serum may cross the blood-brain-barrier and cause bilirubin encephalopathy (acute bilirubin intoxication) or kernicterus (chronic bilirubin intoxication). To avoid these hazardous conditions, it is important to identify the infants at risk for developing severe hyperbilirubinemia. There are many genetic diseases that can cause or aggravate neonatal jaundice. Thus, the knowledge of the genetic diseases associated with neonatal jaundice may be essential for identification of the infants at highest risk. Here, we review neonatal jaundice and describe some genetic disorders associated with neonatal jaundice, such as bilirubin metabolism disorders, hemolytic disorders, bilirubin transport disorders, and others. It is desirable that rapid and accurate screening systems of genetic disorders should be developed for the proper management of neonatal hyperbilirubinemia. Key words: Neonatal jaundice, genetic factors, UGT1A1 gene, hemolytic disorders, transport molecules 

___

  • Bosma PJ, Chowdhury JR, Bakker C, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med 1995; 333: 1171-1175.
  • Bancroft JD, Kreamer B, Gourley GR. Gilbert syndrome accelerates development of neonatal jaundice. J Pediatr 1998; 132: 656-660.
  • Laforgia N, Faienza MF, Rinaldi A, et al. Neonatal hyperbilirubinemia and Gilbert's syndrome. J Perinat Med 2002; 30: 166-169.
  • Maruo Y, D'Addario C, Mori A, et al. Two linked polymorphic mutations (A(TA)7TAA and T- 3279G) of UGT1A1 as the principal cause of Gilbert syndrome. Hum Genet 2004; 115: 525-526.
  • Costa E, Vieira E, Dos Santos R. The polymorphism c.-3279T>G in the phenobarbital- responsive enhancer module of the bilirubin UDP- glucuronosyltransferase gene is associated with Gilbert syndrome. Clin Chem 2005; 51: 2204- 2206.
  • Ferraris A, D'Amato G, Nobili V, et al. Combined test for UGT1A1 -3279T-->G and A(TA)nTAA polymorphisms best predicts Gilbert's syndrome in Italian pediatric patients. Genet Test 2006; 10: 121-125.
  • Akaba K, Kimura T, Sasaki A,et al. Neonatal hyperbilirubinemia and mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene: a common missense mutation among Japanese, Koreans and Chinese. Biochem Mol Biol Int 1998; 46: 21-26.
  • Aono S, Yamada Y, Keino H, et al. Identification of defect in the genes for bilirubin UDP- glucuronosyl-transferase in a patient with Crigler- Najjar syndrome type II. Biochem Biophys Res Commun 1993; 197: 1239-1244.
  • Maruo Y, Nishizawa K, Sato H, Doida Y, Shimada M. Association of neonatal hyperbilirubinemia with bilirubin UDP-glucuronosyltransferase polymorphism. Pediatrics 1999; 103: 1224-1227.
  • Sugatani J, Yamakawa K, Yoshinari K, et al. Identification of a defect in the UGT1A1 gene promoter and its association with hyperbilirubinemia. Biochem Biophys Res Commun 2002; 292: 492-497.
  • Sutomo R, Talib NA, Yusoff NM, et al. Screening for G71R mutation of the UGT1A1 gene in the Javanese-Indonesian and Malay-Malaysian populations. Pediatr Int 2004; 46: 565-569.
  • Yusoff S, Van Rostenberghe H, Yusoff NM, et al. Frequencies of A(TA)7TAA, G71R, and G493R mutations of the UGT1A1 gene in the Malaysian population. Biol Neonate 2006; 89: 171-176.
  • Frank JE. Diagnosis and management of G6PD deficiency. Am Fam Physician 2005; 72: 1277- 1282.
  • Pandolfi PP, Sonati F, Rivi R, et al. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J 1995; 14: 5209-5215.
  • Beutler E. G6PD: population genetics and clinical manifestations. Blood Rev 1996; 10: 45-52.
  • Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 2008; 371: 64- 74.
  • Luzzatto L. Genetics of red cells and susceptibility to malaria. Blood 1979; 54: 961-976.
  • Johnson LH, Bhutani VK, Brown AK. System- based approach to management of neonatal jaundice and prevention of kernicterus. J Pediatr 2002; 140: 396-403.
  • Kaplan M, Rubaltelli FF, Hammerman C, et al. Conjugated bilirubin in neonates with glucose-6- phosphate dehydrogenase deficiency. J Pediatr 1996; 128: 695-697.
  • Kaplan M, Hammerman C. Glucose-6-phosphate dehydrogenase deficiency: a potential source of severe neonatal hyperbilirubinaemia and kernicterus. Semin Neonatol 2002; 7: 121-128.
  • Jalloh S, Van Rostenberghe H, Yusoff NM, et al. Poor correlation between hemolysis and jaundice in glucose 6-phosphate dehydrogenase-deficient babies. Pediatr Int 2005; 47: 258-261.
  • Kaplan M, Renbaum P, Levy-Lahad E, et al. Gilbert syndrome and glucose-6-phosphate dehydrogenase deficiency: a dose-dependent genetic interaction crucial to neonatal hyperbilirubinemia. Proc Natl Acad Sci USA 1997; 94: 12128-12132.
  • Kaplan M. Genetic Interactions in the pathogenesis of Neonatal Hyperbilirubinemia: Gilbert’s syndrome and glucose-6-phosphate dehydrogenase deficiency. Jounal of Perinatology 2001; 21: S30-S34.
  • Mason PJ, Bautista JM, Gilsanz F. G6PD deficiency: the genotype-phenotype association. Blood Rev 2007; 21: 267-283.
  • Weatherall DJ. Thalassaemia: the long road from bedside to genome. Nat Rev Genet 2004; 5: 625- 631.
  • Sonati MF, Costa FF. The genetics of blood disorders: hereditary hemoglobinopathies. Jornal de Pediatria 2008; 40-51.
  • Steiner LA, Gallagher PG. Erythrocyte disorders in the perinatal period. Semin Perinatol 2007; 31: 254-261.
  • Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: an increasing global health problem. Bull World Health Organ 2001; 79: 704-712.
  • O'Donnell A, Premawardhena A, Arambepola M, et al. Interaction of malaria with a common form of severe thalassemia in an Asian population. Proc Natl Acad Sci USA. 2009; 106: 18716-18721.
  • Weatherall DJ. Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet 2001; 2: 245-255.
  • Higgs DR, Vickers MA, Wilkie AO, et al. A review of the molecular genetics of the human alpha-globin gene cluster. Blood 1989; 73: 1081- 1104.
  • Basran RK, Patterson M, Walker L, et al. Prenatal diagnosis of hemoglobinopathies in Ontario, Canada. Ann N Y Acad Sci 2005; 1054: 507-510.
  • Gallagher PG. Red cell membrane disorders. Hematology Am Soc Hematol Educ Program 2005: 13-18.
  • Liu SC, Zhai S, Palek J, et al. Molecular defect of the band 3 protein in southeast Asian ovalocytosis. N Engl J Med 1990; 323: 1530-1538.
  • Jarolim P, Palek J, Amato D, et al. Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci USA 1991; 88: 11022-11026.
  • Laosombat V, Dissaneevate S, Peerapittayamongkol C, Matsuo M. Neonatal hyperbilirubinemia associated with Southeast Asian ovalocytosis. Am J Hematol 1999; 60: 136- 139.
  • Laosombat V, Dissaneevate S, Wongchanchailert M, Satayasevanaa B. Neonatal anemia associated with Southeast Asian ovalocytosis. Int J Hematol 2005; 82: 201-205.
  • Schofield AE, Martin PG, Spillett D, Tanner MJ. The structure of the human red blood cell anion exchanger (EPB3, AE1, band 3)gene. Blood 1994; 84: 2000-2012.
  • Wrong O, Bruce LJ, Unwin RJ, Toye AM, Tanner MJ. Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis. Kidney Int 2002; 62:10-19.
  • Yusoff NM, Van Rostenberghe H, Shirakawa T, et al. High prevalence of Southeast Asian ovalocytosis in Malays with distal renal tubular acidosis. J Hum Genet 2003; 48: 650-653.
  • Anzai N, Kanai Y, Endou H. Organic anion transporter family: current knowledge. J Pharmacol Sci 2006; 100: 411-426.
  • Cui Y, König J, Leier I, Buchholz U, Keppler D. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem 2001; 276: 9626-9630.
  • Huang MJ, Kua KE, Teng HC, et al. Risk factors for severe hyperbilirubinemia in neonates. Pediatr Res 2004; 56: 682-689.
  • Prachukthum S, Nunnarumit P, Pienvichit P, et al. Genetic polymorphisms in Thai neonates with hyperbilirubinemia. Acta Paediatr 2009; 98: 1106- 1110.
  • Kaplowitz N. Physiological significance of glutathione S-transferases. Am J Physiol 1980; 239: G439-G444.
  • Ketley JN, Habig WH, Jakoby WB. Binding of nonsubstrate ligands to the glutathione S- transferases. J Biol Chem 1975; 250: 8670-8673.
  • Simons PC, Jagt DL. Bilirubin binding to human liver ligandin (glutathione S-transferase). J Biol Chem 1980; 255: 4740-4744.
  • Akizawa E, Koiwai K, Hayano T, et al. Direct binding of ligandin to uridine 5'-diphosphate glucuronosyltransferase 1A1. Hepatol Res 2008; 38: 402-409.
  • Muslu N, Dogruer ZN, Eskandari G, et al. Are glutathione S-transferase gene polymorphisms linked to neonatal jaundice? Eur J Pediatr 2008; 167: 57-61.
  • Katar S, Oztürkmen-Akay H, Devecioğlu C, Taşkesen M. A rare cause of hyperbilirubinemia in a newborn: bilateral adrenal hematoma. Turk J Pediatr 2008; 50: 485-487.
  • Ljung R, Chambost H, Stain AM, DiMichele D. Haemophilia in the first years of life. Haemophilia 2008; 14: 188-195.
  • Le Pommelet C, Durand P, Laurian Y, Devictor D. Haemophilia A: two cases showing unusual features at birth. Haemophilia 1998; 4: 122-125.
  • Tan KL, Lim SC. Phototherapy for neonatal jaundice in infants with intestinal obstruction. J Pediatr 1983; 103: 471-473.
  • Goedhals D, Kriel J, Hertzog ML, Janse van Rensburg MN. Human cytomegalovirus infection in infants with prolonged neonatal jaundice. J Clin Virol 2008; 43: 216-218.
  • Bollinger ME, Arredondo-Vega FX, Santisteban I, et al. Brief report: hepatic dysfunction as a complication of adenosine deaminase deficiency. N Engl J Med 1996; 334: 1367-1371.