Yapıştırıcı Birleştirmelerde Bağlantı Mukavemetini Etkileyen Faktörler: Yüzey Morfolojisi ve Yüzey Enerjisi

İmalat sektöründe birleştirme teknolojilerinin önemi artarak devam etmektedir. Birleştirme teknolojileri yarı mamül ürün birleştirmelerinden kompleks yapılar ve kompozit malzeme üretimleri, eklemeli imalat teknolojilerine kadar her alanda kullanılmaktadır. Bu kapsamda, yapıştırıcılar vasıtasıyla yapılan birleştirme teknolojileri farklı cins malzemelerin birleştirmelerine olanak sağladığı gibi, birleştirilecek malzemelerde deformasyona sebep olmadığından büyük avantajlar sağlamaktadır. Yüksek mukavemekli yapıştırıcı uygulamalarında en önemli işlem yüzey hazırlama süreçleridir. Yapışma mekanizmalarında da en yaygın kabul gören ve ispatlanmış teori mekanik kilitlenmedir. Yüzey hazırlama süreçlerinde, malzemelerin optimum yüzey pürüzlülüğüne sahip olmaları durumunda, bağlantılardan istenen mukavemet değerleri elde edilebilir. Yapıştırıcı bağlantılarda birleştirilecek malzemelerin yüzey enerjisi, hem yapıştırıcı reçineyi absorbe etme, hem de yapıştırıcıyla bağ oluşturma bakımından büyük önem taşır. Yüzey hazırlamada uygun yüzey morflojisi ile birlikte yüzey enerjisini arttırıcı işlemler göz gönünde bulundurulmalı ve uygulanmalıdır.Anahtar kelimeler: Yapıştırıcı birleştirmeler 1, Yapışma mekanizması 2, Yüzey hazırlama 3, Yüzey morfolojisi 4, Katıların yüzey enerjisi 5

Affecting Factors of Bond Strength in Adhesive Joints: Surface Morphology and Surface Energy

In the manufacturing industry, the importance of joining technologies has been increasing continuously. Joining techniques are widely employed in many fields such as additive manufacturing, bonding semi-products, manufacturing composite and complex structures. Particularly, adhesively bonded joints provide exceptional advantages over conventional joining techniques such as environmental resistance, thermal/electrical resistance, weight-saving and its ability to join dissimilar materials. In the bonding process of high-strength adhesives, surface preparation of adherends play a significant role in the performance of adhesive joints. Although there are many theories on adhesion mechanism, the most accepted and proven theory is ‘mechanical-interlocking’. In the light of mechanical-interlocking theory, desired strength of adhesive joints can be achieved by keeping the roughness of bonding surfaces optimum. Overall, appropriate surface morphology and other procedures increasing the surface energy should be taken into account for surface preparation step of adhesive joint manufacturing. Keywords: Adhesively bonded joints 1, Adhesion mechanisms 2, Surface preparation 3, Surface morphology 4, Surface energy of solids 5 

___

  • [1] Baldan, A., (2012). Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives, 38, p. 95–116.
  • [2] Gursel, A. (2019). Fundamentals in Adhesive Bonding Design for Complex Structures and Conditions. Journal of Advanced Technology Sciences, 8 (1) p. 1-10.
  • [3] Awaja F, Gilbert M, Kelly G, Fox B, Pigram PJ. (2009). Prog Polym Sci, 34: p. 948–68.
  • [4] Qin R.Y., Schreiber, H.P., (1999). Colloids Surf. 156: p. 85–93.
  • [5] Been, J.L, Bikales, N.M, Bickerman, J.J, Blomquist, R.F, Moks, E., Kovach, G.P., (1971). Adhesion and Bonding. 1st ed. John Wiley and Sons Inc.
  • [6] van Leeden, M.C, Frens, G., (2002). Surface Properties of Plastic Materials in Relation to Their Adhering Performance. Advanced Engineering Materials, 4(5): p. 280–289.
  • [7] Brown, H.R., (2000). Polymer adhesion. Materials Forum, 24: p. 49–58.
  • [8] Wake, W.C., (1982). Adhesion and the Formulation of Adhesives. 2nd ed. Essex: Applied Science Publishers Ltd., New York.
  • [9] A. Gursel, A.A. Mohamad, M.F.M. Nazeri “Adhesion mechanism and failure modes in adhesively bonded joints”. 4. International Conference on Material Science and Technology (IMSTEC’19) Proceedings pp. 106-114. 18-20 October 2019 Kızılcahamam-ANKARA.
  • [10] Salih Yildiz, Yiannis Andreopoulos, Feridun Delale, Mode I characterization of toughened epoxy adhesive joints under shock-wave loading, International Journal of Adhesion and Adhesives, 90 (2019) pp. 71–87.
  • [11] K. Gollins, J. Chui, A. Gursel, F. Delale, B.M. Liaw, “Comparison of Manufacturing Techniques Subject to High Speed Impact”. ASME 2014 International Mechanical Engineering Congress & Exposition, IMECE2014-39677. November 14-20, 2014 Montreal-Canada.
  • [12] Gursel, A., Cekirge, H.M. (2019). Adhesive Joints Subjected to Impact Loading: A Review. doi: 10.5923/j.ijme.20190901.03 International Journal of Materials Engineering 2019, 9(1): p. 16-21.
  • [13] Sina Ebnesajjad and Cyrus Ebnesajjad. Surface Treatment of Materials for Adhesive Bonding Elsevier Inc. (2014), pp. 3-24.
  • [14] Lucas F. M. da Silva, Andreas Öchsner, Robert D. Adams - Handbook of Adhesion Technology. 2018, Springer International Publishing pp. 133-144.
  • [15] Wu S. Polymer interface and adhesion. 1st ed. New York: Marcel Dekker, Inc., 1982.
  • [16] Fox HW, Zissman WA., The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene. Journal of Colloid Science, Volume 5, Issue 6, (1950), pp. 514-531.
  • [17] Lee LH. Fundamentals of adhesion. New York: Plenum Press; 1991.
  • [18] Pukanszky, B., Fekete, E. (1999). Adhesion and Surface Modification. Mineral Fillers in Thermoplastics: Adhesive in Polymer Science, 139: p. 109–153.
  • [19] Roberts, J.C. (1996). The Chemistry of Paper. 1st ed. Cambridge, UK: The Royal Society of Chemistry.
  • [20] Amouroux, N., Leger, L. (2006). Modulation of Adhesion at Acrylic Adhesive-Silicone Elastomer Interfaces. 
doi: 10.1080/00218460600875938. The Journal of Adhesion, 82(9): p. 919-932.
  • [21] Lo, C-T., Laabs, F.C., Narasimhan, (2004) B. Interfacial adhesion mechanisms in incompatible semicrystalline polymer systems. doi: 10.1002/polb.20148. Journal of Polymer Science, Part B: Polymer Physics, 42(14): p. 2667–2679.
  • [22] Raghavan, J., Wool, R.P. (1999). Interfaces in repair, recycling, joining and manufacturing of polymers and polymer composites. doi: 10.1002/(SICI)1097-4628(19990131)71. Journal of Applied Polymer Science, 71(5): p. 775–785.
  • [23] Oliver, J.P., Huh, C., Mason, S.G. (1980). An experimental study of some effects of solid surface roughness on wetting. Colloids Surface, (1)1: p. 79-104.
  • [24] Yang S., Gu, L., Gibson, R.F. (2001). Nondestructive detection of weak joints in adhesively bonded composite structures. doi:10.1016/S0263-8223(00)00125-2. Compos Structures, 51(1): p. 63–71.
  • [25] Buchman, A., Dodiuk-Kenig, H. (2002). Laser surface treatment to improve adhesion. In: Mittal KL, Pizzi A, editors. Adhesion promotion techniques: technological applications. p. 205-243. New York: Marcel Dekker, Inc.
  • [26] Maeva. E., Severina, I., Bondarenko, S., Chapman, G., O’Neill, B., Severin, F., Maev, R.G. (2004). Acoustical methods for investigations of adhesively bonded structures: a review. Canadian Journal of Physics, p. 82: p. 891-1025.
  • [27] Fourche, G. (1995). An overview of the basic aspects of polymer adhesion. Part I: Fundamentals. doi: 10.1002/pen.760351202. Polymer Engineering and Science, (35): p. 957-967.
  • [28] Hart-Smith, L.J. (1981). Effects of flaws and porosity on strength of adhesive-bonded joints.. Douglas Aircraft Company Report MDC J4699.