Elektrikli Araçlarda Ultra Kapasitör Kullanımı ve Uygulanabilirlik Durumunun Değerlendirilmesi

Petrolden üretilen fosil yakıtların doğaya olan olumsuz etkileri nedeniyle günümüzde alternatif enerji kaynaklarının daha verimli ve yaygın kullanılması önem kazandı. Taşıtlarda fosil yakıtların kullanımdan uzaklaşılmak istenmesi, elektrikli taşıtların yaygınlaşmasını ve bu alanda yapılan çalışmaları hızlandırdı. Elektrikli taşıtlar konusunda yapılan çalışma ve araştırmalar beraberinde “şarj süresi, maksimum menzil, maliyet ve farklı depolama yöntemleri” gibi başlıkların öneminin artmasına neden olmuştur. Günümüzde, bir saati bulan şarj süreleri ve içten yanmalı motor kullanan araçlara göre düşük menzillere sahip olmaları elektrikli araçların yaygın kullanımının önündeki büyük engellerdendir. Elektrikli araç teknolojisinin ilerlemesi beraberinde yeni depolama ve şarj sistemleri üzerinde araştırmaların yapılmasını da beraberinde getirmiştir. Modern enerji depolama sistemlerine bir örnek de ultra kapasitörler olmuştur. Bu kapasitörlerin şarj ve deşarjlarında akım sınırının olmaması ve büyük kapasiteleri erişebilmesi batarya teknolojisine alternatif olarak görülmelerini sağlamıştır. Fakat yüksek şarj akımlarına dayanacak iletkenlerin gerekmesi, depolanan enerjinin zaman içerisinde kaybolması ve yüksek kapasitelere çıkılma zorluğu aşılması gereken sorunlardır. Bu çalışmada elektrikli taşıtlara için alternatif olabilecek, enerjinin ultra kapasitörlerle depolandığı model bir araç tasarlanmıştır. Kullanılan manyetik şarj sistemleri (kablosuz şarj) ile kısa süreli ve duraklamasız şarj imkanı elde edilmiştir. Üretilen model araç ve şarj istasyonu, klasik bataryalı araç ve bağlantılı hızlı şarj sistemli model ile karşılaştırılmış, avantaj ve dezavantajları incelenmiştir.

Use of Ultra Capacitors in Electric Vehicles and Evaluation of Applicability

Due to the negative effects of fossil fuels produced from petroleum on nature, more efficient and widespread use of alternative energy sources has gained importance today. The desire to avoid the use of fossil fuels in vehicles has accelerated the spread of electric vehicles and the studies done in this field. Studies and researches on electric vehicles have led to an increase in the importance of topics such as "charging time, maximum range, cost and different storage methods". Nowadays, charging times of up to one hour and having lower ranges compared to vehicles using internal combustion engines are major obstacles to the widespread use of electric vehicles. The advancement of electric vehicle technology has led to research on new storage and charging systems. An example of modern energy storage systems is ultra-capacitors. The fact that these capacitors do not have a current limit in their charge and discharge and that they can reach large capacities have made them seen as an alternative to battery technology. However, the need for conductors to withstand high charging currents, the loss of stored energy over time, and the difficulty of reaching high capacities are problems that need to be overcome. In this study, an alternative to electric vehicles, a model vehicle in which energy is stored with ultra capacitors is designed. With the magnetic charging systems (wireless charging) used, short-term and non-stop charging has been achieved. The model vehicle produced and the charging station were compared with the conventional battery-powered vehicle and the connected fast charging system model, and their advantages and disadvantages were examined

___

  • [1] J. Li, “Compatibility and investment in the U.S. electric vehicle market,” Job Market Paper, 23 Ekim, 2017.
  • [2] The Electric Vehicle World Sales Database, 2016, Electric Vehicle Plug-in Sales for 2016 [Online]. Available: http://www.ev-volumes.com/news/global-plug-in-sales-for-2016/
  • [3] S. M. Knupfer, “Electrifying Insights: How Automakers Can Drive Electrified Vehicle Sales and Profitability,” (McKinsey & Company), 2017.
  • [4] F. Güven, H. Rende, “Elektrikli Araçların Tasarımında Malzeme Seçiminin Önemi”, Engineer and Machinery, vol.58, pp.81-95, 2017.
  • [5] A. Khaligh, Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art,” IEEE transactions on Vehicular Technology, vol.59, no.6,pp. 2806- 2814, 2010.
  • [6] L. V. Pérez, G. R. Bossio, D. Moitre, G. O. García, “Optimization of power management in an hybrid electric vehicle using dynamic programming," Mathematics and Computers in Simulation, vol.73, no.1-4, pp.244-254, 2006.
  • [7] J. Singh, B. Singh, R. Chaurasia, S. Sachan, “Performance investigation of permanent magnet synchronous motor drive using vector controlled technique. In Power, Control and Embedded Systems,” (ICPCES), 2nd International Conference on Aralık 2012.
  • [8] H. Gualous, D. Bouquain, S. Berthon, J. M. Kauffmann, “Experimental study of supercapacitor serial resistance and capacitance variations with temperature,” Journal of Power Sources, vol.123, no.1, pp.86-93, 2003.
  • [9] R. Karimpour, M. Karimpour, “Development of Hybrid Propulsion System for Energy Management and Emission Reduction in Maritime Transport System,”. Open Journal of Marine Science, vol.6, pp.482-497, 2016.
  • [10] J. Moreno, M. E. Ortuzar, L. W. Dixon, “Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks,” IEEE Transaction on Industrial Electronics, vol.53, no.2, pp.614-623, 2006.
  • [11] H. Özbay, “Şebeke Etkileşimli Yenilenebilir Enerji Destekli Hızlı Batarya Şarj Sisteminin Gerçekleştirilmesi,” Karabük Üniversitesi, Fen Bilimleri Enstitüsü, ElektrikElektronik Mühendisliği Anabilim Dalı, Karabük; 2017.
  • [12] G. M. Freeman, T. E. Drennen, A. D. White, “Can parked cars and carbon taxes create a profit? The economics of vehicle-to-grid energy storage for peak reduction,” Energy Policy, vol.106, pp.183 190, 2017.
  • [13] Y. A. Shirazi, D. L. Sachs, “Comments on Measurement of Power Loss During Electric Vehicle Charging and Discharging," Notable Findings For V2G Economics, 2018.
  • [14] M. M. Morcos, “Battery Chargers for Electric Vehicles,” IEEE Power Engineering Review, vol.20, no.11, pp. 8-11, 2000.
  • [15] A. Aydın, C. Yılmaz, R. Demirci, “Çembersel Doğru Akım Motoru Tasarımı ve Manyetik Analizi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.7, ss 1351-1366, 2020.
  • [16] E. Gören, “Hibrit ve elektrikli araçlar ile toplu ulaşımda enerji verimliliği,” National Energy Efficiency Forum, İstanbul, Türkiye, ss.28-32, 2011.
  • [17] Ü. Ağbulut, H. Bakır, “The Investigation on Economic and Ecological Impacts of Tendency to Electric Vehicles Instead of Internal Combustion Engines,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.7, ss.25-36, 2019.
  • [18] W. Liu, “Hybrid electric vehicle system modeling and control,” New York, ABD, John Wiley & Sons, 2017.
  • [19] M. Ehsani, Y. Gao, S, Longo, K. Ebrahimi, “Modern electric, hybrid electric, and fuel cell vehicles,” Florida, ABD, CRC press, 2018.
  • [20] J. Zhang, J. Yan, Y. Liu, H. Zhang, G. Lv, “Daily electric vehicle charging load profiles considering demographics of vehicle users,” Applied Energy, 274, Article 115063, 2020
  • [21] L. Wanga, X. Wamga, W. Yangd, “Optimal design of electric vehicle battery recycling network – From the perspective of electric vehicle manufacturers,” Applied Energy, 275, Article 115328, 2020
  • [21] H. Mehrjerdi, R. Hemmati, “Electric vehicle charging station with multilevel charging infrastructure and hybrid solar-battery-diesel generation incorporating comfort of drivers,” J Storage Mater, vol.26, pp. 1009–1024, 2019.
  • [23] H. Mehrjerdi, R. Hemmati, “Modeling and optimal scheduling of battery energy storage systems in electric power distribution networks,” J Cleaner Prod, vol.234, pp.810–821, 2019.
  • [24] L. Luo, W. Gu, S. Zhou, H. Huang, S. Gao, J. Han, “Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities,” Appl Energy, vol.226, no.1, pp.087– 1099, 2018.
  • [25] M. Bornapour, R. A. Hooshmand, A. Khodabakhshian, M. Parastegari, “Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement,” Energy Convers Manage, vol.150, pp.725–741, 2017.
  • [26] H. Mehrjerdi, E. Rakhshani, “Correlation of multiple time-scale and uncertainty modelling for renewable energy-load profiles in wind powered system,” J Cleaner Prod, 236, Article 117644, 2019.
  • [27] C. Ulu, G. Komurgoz, "Elektrikli araç uygulamalari için 75 kW asenkron motor tasarimi," 2016 National Conference on Electrical, Electronics and Biomedical Engineering, ELECO 2016 , Bursa, Turkey, pp.286-290, 2016
  • [28] http://teslaturk.com/tesla-bataryalarinin-gercek-kapasiteleri/ Erişim 10 Aralık 2020