Türkiye’de Üretilen Elektrikli ve İçten Yanmalı Motorlu Araçların Karşılaştırmalı Çevresel Yaşam Döngüsü Değerlendirmesi

Bu çalışmada Türkiye’de üretilen elektrikli ve benzinle çalışan içten yanmalı motorlu binek otomobillerin çevresel etkileri yaşam döngüsü değerlendirmesi yöntemiyle kıyaslanmıştır. Fonksiyonel birimin aracın kat ettiği 1 kilometrelik mesafe olarak tanımlandığı çalışmada CCaLC yazılımı ve CML2001 yöntemi kullanılmıştır. Karbon ayak izi açısından elektrikli araçların içten yanmalı motorlu araçlara göre daha çevre dostu olduğunu görülmekle beraber, diğer çevresel etkiler de göz önüne alındığında iki teknoloji arasında ciddi bir fark görülmemiştir. Eşit ağırlıklandırma yoluyla hesaplanan toplam çevresel etki skoruna bakıldığında elektrikli araçların, içten yanmalı motorlu araçlara göre %4 daha yüksek etkiye sahip olduğu belirlenmiştir. Çevresel etkilerin iki temel sebebi olarak otomobil lastikleri ve araçların hareketi için gereken enerji ihtiyacı tespit edilmiştir. 2030 yılında Türkiye’de ön görülen elektrik araç yaygınlaşma hedeflerinin tutturulması halinde ulusal karbon ayak izinin %1,6 oranında düşmesi beklenmektedir. Elektrikli araçların karbon ayak izi dışındaki diğer çevresel etkilerinin azaltılabilmesi için Türkiye’deki şebeke elektriği üretiminde yenilenebilir kaynakların payının artırılması gerekliliği ortaya çıkmıştır.

Environmental Life Cycle Assessment of Electric Vehicles and Internal Combustion Engine Vehicles Manufactured in Turkey

In this study the environmental impacts of electric vehicles and internal combustion engine vehicles manufactured in Turkey were compared by using life cycle assessment methodology. The functional unit was chosen as 1 kilometre of distance covered by the vehicle. CCaLC software alongside CML 2001 method was used. The results show that while electric vehicles are the more environmentally friendly option as far as carbon footprint is concerned, there is no major difference between the technologies when other environmental impacts are also taken into account.. The overall impact scores calculated by assigning equal weights to the impacts revealed that electric vehicles have 4% higher environmental impact than internal combustion engine vehicles. The main cause of environmental impacts turned out to be automobile tires and the energy required for vehicle movement. If the targets for the proliferation of electric vehicles in Turkey are reached by 2030, the nation-wide carbon footprint of the country is expected to decrease by 1.6%. It was determined that the share of renewables in Turkish grid electricity production shall be increased if the environmental impacts of electric vehicle utilization is to be reduced.

___

  • [1] H. Iglinski and M. Babiak, “Analysis of the potential of autonomous vehicles in reducing the emissions of greenhouse gases in road transport,” Proced. Eng., vol. 192, pp. 353-358, 2017.
  • [2] V. Gallina, S. Torresan, A. Critto, A. Sperotto, T. Glade, and A. Marcomini, “A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment,” J. Environ. Manage., vol. 168, pp. 123-132, 2016
  • [3] V. Georgatzi, Y. Stamboulis, and A. Vetsikas, “Examining the determinants of CO2 emissions caused by the transport sector: Empirical evidence from 12 European countries,” Econ. Anal. Policy, vol. 65, pp. 11-20, 2020.
  • [4] WWF. (2012, 10 Ekim). Türkiye'nin Ekolojik Ayak İzi Raporu [Çevrimiçi]. Erişim: https://www.footprintnetwork.org/content/images/article_uploads/Turkey_Ecological_Footprint_Report_Turkish.pdf.
  • [5] L.Trevisan and M. Bordignon, “Screening life cycle assessment to compare CO2 and greenhouse gases emissions of air, road, and rail transport: an exploratory study,” Procedia CIRP, vol. 90, pp. 303-309, 2020.
  • [6] G. Offer, M. Contestabile, D. Howey, R. Clague, and N. Brandon, “Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK,” Energ. Policy, vol. 39, pp. 1939-1950, 2011.
  • [7] S. Verma, G. Dwivedi, and P.Verma, “Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: a review,” Mater. Today Proceedings, vol. 814, 2022, Art. no. 152870.
  • [8] L. de Souza, E. Lora, J. Palacio, M. Rocha, M. Reno, and O. Venturini, “Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil,” J. Cleaner Prod., vol. 203, pp. 444-468, 2014.
  • [9] K. Petrauskiene, M. Skvarnaviciute, and J. Dvarioniene, “Comparative environmental life cycle assessment of electric and conventional vehicles in Lithuania,” J. Cleaner Prod., vol. 246, 2020, Art. no. 119042.
  • [10] D. Burchart-Korol, S. Jursova, P. Folega, J. Korol, P. Pustejovksa, and A. Blaut, “Environmental life cycle assessment of electric vehicles in Poland and the Czech Republic,” J. Cleaner Prod., vol. 202, pp. 476-487, 2018.
  • [11] Y. Biçer and İ. Dinçer, “Life cycle environmental impact assessments and comparisons of alternative fuels for clean vehicles,” Resour. Conserv. Recycl., vol. 132, pp. 141-157, 2018.
  • [12] F. del Pero, M. Delogu, and M. Pierini, “Life Cycle Assessment in the automotive sector: a comparative case study of internal combustion engine (ICE) and electric car,” Procedia Struct. Integrity, vol. 12, pp. 521-537, 2018.
  • [13] L. Yang, B. Yu, B. Yang, H. Chen, G. Malima, and Y. Wei, “Life cycle environmental assessment of electric and internal combustion engine vehicles in China,” J. Cleaner Prod., vol. 285, 2021, Art. no. 121899.
  • [14] G. Naranjo, D. Bolonio, M. Ortega, and M. Garcia-Martinez, “Comparative life cycle assessment of conventional, electric and hybrid passenger vehicles in Spain,” J. Cleaner Prod., vol. 192, 2021, Art. no. 125883.
  • [15] Y. Bıyık ve G. Civelekoğlu, “Ulaşım sektöründen kaynaklı karbon ayak izi değişiminin incelenmesi,” Bilge Int. J. Sci. Techno. Res., c. 2, s. 2, ss. 157-166, 2018
  • [16] T. Doğan Güzel and K. Alp, “Modeling of greenhouse gas emissions from the transportation sector in Istanbul by 2050,” Atmos. Pollut. Res., vol. 11, pp. 2190-2201, 2020.
  • [17] A. Ustabaş, “Mikro ve makro etkileri yönünden elektrikli otomobiller (Türkiye ekonomisi örneği),” Marmara Üniversitesi İ.İ.B. Dergisi, c. 26, s. 1, ss. 269-291, 2014.
  • [18] B. Yağcıtekin, M. Uzunoğlu, A.E.O. Karakaş, “Assessment of electrically-driven vehicles in terms of emission impacts and energy requirements: A case study for Istanbul,” J. Cleaner Prod., vol. 96, pp. 486-492, 2015.
  • [19] Environmental Management - Life Cycle Assessment - Principles and Framework, ISO 14040, 2006.
  • [20] Environmental Management - Life Cycle Assessment - Requirements and Guidelines, ISO 14044, 2006.
  • [21] Carbon Calculations over the Life Cycle of Industrial Activities (CCaLC), Bilgisayar Programı, Manchester (Birleşik Krallık): Manchester Üniversitesi, 2016.
  • [22] R. Hischier and B. Weidama, Implementation Of Life Cycle İmpact Assessment Methods, St. Gallen, Switzerland: Ecoinvent, July 2010.
  • [23] F.G. Üçtuğ, “Stakeholder opinion-based comparison of life cycle environmental impacts of electricity generation in Turkey with selected European countries,” Anadolu University J. Sci. Technol. A- Appl. Sci. Eng., vol. 18, no. 1, pp. 178-198, 2017.
  • [24] MYEV. (2019, October 10). How long should an electric car's battery last? [Online]. Available: https://www.myev.com/research/ev-101/how-long-should-an-electric-cars-battery-last#:~:text=Consumer%20Reports%20estimates%20the%20average,driven%2012%2C000%20miles%20per%20year.
  • [25] Yeşiltaylar. (2018, 8 Mayıs). Geri dönüşüm sektörünün dünyadaki genel görünümü ve Türkiye'deki durumu [Çevrimiçi]. Erişim: https://www.yesiltaylar.com.tr/tr/blog/geri-donusum-sektorunun-dunyadaki-genel-gorunumu-ve-turkiyedeki-durumu.
  • [26] K. Premrudee, U. Jantima, A. Kittinan, L. Naruetep, K. Kittiwan, and B. Sudkla, “Life cycle assessment of lead acid battery: case study for Thailand,” Environ. Prot. Eng., vol. 39, no. 1, pp. 101-114, 2013.
  • [27] Y. Dong, Y. Zhao, U. Hossain, Y. He, and P. Liu, “Life cycle assessment of vehicle tires: A systematic review,” Cleaner Environ. Syst., vol. 2, pp. 100033, 2021.
  • [28] B. Atılgan and A. Azapagic, “An integrated life cycle sustainability assessment of electricity generation in Turkey,” Energ. Policy, vol. 93, pp. 168-186, 2016.
  • [29] enerjiportali.com. (2021, 10 Ekim). Türkiye Elektrik Enerjisi Üretim İstatistikleri [Çevrimiçi]. Erişim: https://www.enerjiportali.com/turkiye-elektrik-enerjisi-uretim-istatistikleri-aralik-2020/.
  • [30] H. Abdi. (2010, October 10). Normalizing Data [Online]: Available: https://personal.utdallas.edu/~herve/abdi-Normalizing2010-pretty.pdf.
  • [31] J. Timperley. (2018, May 3). The Carbon Brief Profile: Turkey [Online]. Available: https://www.carbonbrief.org/carbon-brief-profile-turkey.
  • [32] tuik.gov.tr. (2021, 26 Ocak). Motorlu Kara Taşıtları 2020 [Çevrimiçi]. Erişim: https://data.tuik.gov.tr/Bulten/Index?p=Motorlu-Kara-Tasitlari-Aralik-2020-37410.
  • [33] AA. (2020, February 21). Turkey shows real market potential for electric cars [Online]. Availabile: https://www.aa.com.tr/en/energy/electricity/turkey-shows-real-market-potential-for-electric-cars-/28430.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Malva neglecta Wallr. (Ebegümeci)’nın In vitro Biyoaktif ve Fitokimyasal Özellikleri

Fatma KESER, Mustafa KARATEPE, Serhat KESER, Suat TEKİN, İsmail TÜRKOĞLU, Omer KAYGİLİ, Ersin DEMİR, Prof. Dr. Ökkeş YILMAZ, Süleyman SANDAL, Sevda KIRBAG

Farklı Dispersiyon Tekniklerinin Elektroeğirilmiş Karbon Nanotüp/ Termoplastik Poliüretan Nanokompozitlerin Elektromekanik Özelliklerine Etkisinin Deneysel İncelenmesi

Abdulkadir ŞANLI

Mn-bölgesi Katkılamanın La0.62Bi0.05Ca0.33Mn1-xRuxO3 Manganit Sisteminin Manyetokalorik Özellikleri Üzerine Etkileri

Selda KILIÇ ÇETİN, Gönül AKÇA, Ahmet EKİCİBİL

Beyin Tümör Tespiti İçin Derin Öğrenme Temelli Bilgisayar Destekli Tanı Sistemi

Tarıkcan DOĞANAY, Oktay YILDIZ

Farklı Sürtünmeli Sarkaç Tipi İzolatörlerin Yapı Sismik Davranışına Etkileri

Muhamad ZULFAKAR, Ali İhsan KARAKAŞ

Al6061 Talaşının Toz Metalurjisi ile Geri Kazanımı

Ümit Gencay BAŞCI, Hasan İsmail YAVUZ, Rıdvan YAMANOĞLU

Ahşap Yüzeylerde Boya/Vernikleri Temizlemek İçin Kullanılan Çevreci Yöntem ve Medyalar

İzham KILINÇ, Mehmet BUDAKÇI, Mustafa KORKMAZ

Dijital Teknolojiler Aracılığıyla Kültürel Mirasa Erişim: Akdamar Kilisesi’nin Etkileşimli 3B Modeli

Ahmet USLU

Tıbbi Ortamlarda Kullanılan Portatif Hava Temizleme Sistemi

Yiğit Ali ÜNCÜ, Onur KOÇAK

SPT-N’ den Hesaplanan Zeminin Kayma Dalgası (Vs)’nın Eskişehir Zemini için İstatistiksel Olarak Değerlendirilmesi

Ebru CİVELEKLER, Yücel GÜNEY