Tıbbi Ortamlarda Kullanılan Portatif Hava Temizleme Sistemi

Toplum içerisinde ortak kullanıma açık alanlarda hava kalitesinin korunması sağlık açısından önemlidir ve güncel bir problemdir. Bu problem, havalandırmanın yetersiz olduğu birçok ortak kullanım alanı ile birlikte büyük veya küçük sağlık hizmeti veren kuruluşlarda kendini sıklıkla salgın hastalıklarla ya da yaşanan ölümler ile göstermektedir. Bu problemin önüne geçilebilmesi için bu zamana kadar atılan adımlar yetersiz kalabilmektedir. Çalışma kapsamında, partikül tutucu filtreler, UV lambalar kullanılarak, küçük ve taşınabilir, medikal seviyede hava kalitesi sağlayan bir hava temizleme sistemin tasarlanmıştır. Bu sistem EN ISO 14644-1 temiz oda standartlarına uygun olacak şekilde UV-C teknolojisinden yararlanılarak tasarlanmıştır. Bu cihaz, sağlık kuruluşlarındaki toplu taşıma araçları, bekleme ve yoğun bakım odaları, mikrobiyoloji ve biyokimya laboratuvarları gibi yerlerde kullanılabilir niteliktedir.

Portable Air Purification System Used in Medical Environments

The protection of air quality in public areas in the community is important for health and is a current problem. This problem often manifests itself with epidemic diseases or deaths in large or small healthcare institutions, along with many common areas where ventilation is insufficient. The steps taken so far are insufficient to prevent this problem, In the study, a small and portable air purification system was designed using particulate filters and UV lamps, providing medical-grade air quality. This system has been designed in accordance with EN ISO 14644-1 cleanroom standards using UV-C technology. This device can be used in health institutions such as public transportation vehicles, intensive care waiting rooms, microbiology, and biochemistry laboratories.

___

  • [1] P.S. Brachman, “Nosocomial infection control: an overview,” Reviews of Infectious Diseases, vol. 3, no. 4, pp. 640-648, 1981.
  • [2] R.P. Wenzel, R.L. Thompson, S.M. Landry, B.S. Russell, P.J. Miller, S. Ponce de Leon, “Hospital-acquired infections in intensive care unit patients: an overview with emphasis on epidemics,” Infect Control, vol. 4, no. 5, pp. 371-375, 1983.
  • [3] R.W. Haley, D.H. Culver, J.W. White, W.M. Morgan, T.G. Emori, “The nationwide nosocomial infection rate: a new need for vital statistics,” American Journal of Epidemiology, vol. 121, no. 2, pp. 159-167, 1985.
  • [4] D. Pittet, D. Tarara, R.P. Wenzel, “Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality,” The Journal of the American Medical Association, vol. 271, no. 20, pp. 1598- 1601, 1997.
  • [5] E. Pollock, E.L. Ford-Jones, M. Corey, G. Barker, C.M. Mindorff, R. Gold, J. Edmonds, D., Bohn, “Use of the pediatric risk of mortality score to predict nosocomial infection in a pediatric intensive care unit,” Critical Care Medicine, vol. 19, no. 2, pp. 160-165, 1991.
  • [6] J.L. Vincent, D.J. Bihari, P.M. Suter, H.A. Bruining, J. White, M.H. Nicolas-Chanoin, M. Wollf, R.C. Spencer, M. Hemmer, “The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee,” The Journal of the American Medical Association, vol. 274, no. 8, pp. 639-644, 1995.
  • [7] V. Jean-Louis, “Nosocomial infections in adult intensive-care units,” Lancet, vol. 362, no. 9382, pp. 2068-2077, 2003.
  • [8] M.M. Khan, Y. Celik, “Cost of nosocomial infection in Turkey: an estimate based on the university hospital data,” Health Services Management Research., vol. 14, no. 1, pp. 49-54, 2001.
  • [9] E. Cheek, V. Guercio, C. Shrubsole, S. Dimitroulopoulou, “Portable air purification: Review of impacts on indoor air quality and health,” Science of The Total Environment , vol. 766, pp. 142585, 2021.
  • [10] M. Guo, M. Zhou, S. Wei, J. Peng, Q. Wang, L. Wang, D. Cheng, W. Yu, “Particle removal effectiveness of portable air purifiers in aged-care centers and the impact on the health of olderpeople,” Energy and Buildings, vol. 250, pp. 111250, 2021.
  • [11] M. Rodríguez, M. L. Palop, S.Seseña, A. Rodríguez, “Are the portable air cleaners (PAC) really effective to terminate air borne SARS-CoV-2,” Science of the Total Environment, vol. 785, pp. 147300, 2021.
  • [12] E. Cooper, Y.Wang, S.Stamp, E. Burman, D.Mumovic, “Use of portable air purifiers in homes: Operating behaviour, effect on indoor PM2.5 and perceived in door air quality,” Building and Environment, vol. 191, pp. 107621, 2021.
  • [13] T. Zhang, S. Wang, G. Sun, L. Xu, D.Takaoka, “Flow impact of an air conditioner to portable air cleaning,” Building and Environment, vol. 360, no. 1323, pp. 2047-2056, 2010.
  • [14] J. Pei, W. Dai, H. Li, J. Liu, “Laboratory and field investigation of portable air cleaners’ long-term performance for particle removal to be published in: Building and environment,” Building and Environment, vol. 181, pp. 107100, 2020.
  • [15] J. Cai, W. Yu, B. Li, R. Yao, T. Zhang, M. Guo, H. Wang, Z. Cheng, J. Xiong, Q. Meng, H. Kipen, “Particle removal efficiency of a house hold portable air cleaner in real-world residences: A single-blindcross-overfieldstudy,” Energy and Buildings, vol. 203, pp. 109464, 2019.
  • [16] A. Shiue, S. Hu, C. Tseng, E. Kuo, C. Liu, C. Hou, T. Yu, “Verification of air cleaner on-site modeling for PM2.5 and TVOC purification in a full-scaleindoorairqualitylaboratory,” Atmospheric Pollution Research, vol. 10, no. 1, pp. 209-218, 2019.
  • [17] T.C Sağlık Bakanlığı İnşaat ve Onarım Dairesi Başkanlığı. (2010, 20 Ağustos). Türkiye sağlık yapıları asgari tasarım standartları 2010 yılı kılavuzu [Çevrimiçi]. Erişim: https://ekutuphane.saglik.gov.tr/Yayin/414.
  • [18] Cleanrooms and associated controlled environmnets-Part1: Classification of air cleanliness by particles concentration, ISO 14644–1, 2016.
  • [19] W.J. Fisk, “Health benefits of particle filtration,” Indoor Air, vol. 23, no. 5, pp. 357-368, 2013.
  • [20] M.P. Cal, M.J. Rood, S.M. Larson, “Gas phase adsorption of volatile organic compounds and water vapor on activated carbon cloth,” Energy & Fuels, vol. 11, pp. 311-315, 1997.
  • [21] K.W. Jo ve H.H. Chun, “Application of fibrous activated carbon filter in continuous-flow unit for removal of volatile organic compounds under simulated indoor conditions,” Aerosol and Air Quality Research, vol. 14, no. 1, pp. 347–354, 2014.
  • [22] ASHRAE. (2014, July 2). Ashrae standards strategic plan [Online]. Available: https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/2014-2015-ashrae-standards-strategic-plan.pdf.
  • [23] K. Aydın, “Ultraviyole ışınları ile suların dezenfeksiyonu,” IX. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, İzmir, Türkiye, 2009, ss. 989-1004.
  • [24] N. Hoda. (2019, 2 Ocak). İklimlendirme sistemlerinde iç hava kalitesi için havanın filtrelenmesi [Çevrimiçi]. Erişim: http://www.iccevrekalitesi.net/pdf/seminer/2015-19.pdf.
  • [25] S.B. Kim, C.H. Sung, “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst,” Applied Catalysis B: Environmental, vol. 35, no. 4, pp. 305-315, 2002.
  • [26] T. Obee, R.T. Brown, “TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene,” Environmental Science & Technology, vol. 29, no. 5, pp. 1223-1231, 1995.
  • [27] L.M. Sattler, H.M. Lijiestrand, “Method for predicting photocatalytic oxidation rates of organic compounds,” Journal of the Air & Waste Management Association, vol. 53, pp. 3-12, 2003.
  • [28] R.M. Alberici, W.F. Jardim, “Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide,” Applied Catalysis B: Environmental, vol. 14, no. 1-2, pp. 58-68, 1997.
  • [29] N.I. Goldstein, R.N. Goldstein, M.N. Merzlyak, “Negative air ions as a source of superoxide,” International Journal of Biometeorology, vol. 36, pp. 118–122, 1992.
  • [30] K. Nagato, Y. Matsui, T. Miyata, T. Yamauchi, “An analysis of the evolution of negative ions produced by a corona ionizer in air,” International Journal of Mass Spectrometry, vol. 248, no. 3, pp. 142-147, 2006.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Sismik İzolatörlü Yapıların Tasarımına Etki Eden Faktörlerin İncelenmesi

Esra ALASAF, Hakan ÖZTÜRK

Bir İşletmeye Ait Yardımcı Tesislerin Enerji Tüketimi ve Verimliliğinin İncelenmesi

Özge CURA, Elif ÖĞÜT

S-SBR (Solution Stiren Bütadien Kauçuk) Bazlı Kauçuk Karışımlarına Farklı Karbon Siyahlarının Etkisi

Gasim ALTUNDAL, Tuğçe GÖRMÜŞER, Metin KURU, Esra ÇETİN, İlyas UYGUR

İyileştiren Hastane Yaklaşımı ve 21. Yüzyılın Sağlık Kampüslerine Yönelik Tasarım İlkeleri

Nazlıcan BİRİNCİ, Gaye BİROL

Gaz Tungsten Ark Kaynaklı 10 mm Kalınlığındaki AISI 316L Bağlantıların İçyapı ve Mekanik Karakterizasyonu

Hüseyin Tarık SERİNDAĞ, Gürel ÇAM

Duvar Bloklarında Boşluk Geometrisinin Isı Transferine Etkisinin İncelenmesi

Ersin HAYDARASLAN, Burhan ÇUHADAROĞLU

Farklı En Boy Oranlarına Sahip Dikdörtgensel Prizmatik Cisimler Etrafındaki Akış Yapısının Deneysel Olarak İncelenmesi

Cemre POLAT, Doğan Burak SAYDAM, Mustafa SÖYLER, Coskun ÖZALP

2-Asetilpiridin Bazlı Kalkonun Hg2+ Sensör Malzemesi Olarak Kullanılması: Deneysel ve Teorik İnceleme

Ahmad Badreddin MUSATAT, Alparslan ATAHAN, Mecit AKSU, Mustafa ZENGİN

Malva neglecta Wallr. (Ebegümeci)’nın In vitro Biyoaktif ve Fitokimyasal Özellikleri

Fatma KESER, Mustafa KARATEPE, Serhat KESER, Suat TEKİN, İsmail TÜRKOĞLU, Omer KAYGİLİ, Ersin DEMİR, Prof. Dr. Ökkeş YILMAZ, Süleyman SANDAL, Sevda KIRBAG

2,6-bis-benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu ve Elektrokimyasal Özelliklerinin İncelenmesi

Fatih PEKDEMİR