Al6061 Talaşının Toz Metalurjisi ile Geri Kazanımı

Son yıllarda endüstrinin gelişmesi çevre kirliliğinin artmasında büyük rol oynamıştır. Çevrenin korunması amacıyla özellikle metalik atıkların geri dönüştürülmesi her geçen gün daha fazla dikkat çekmektedir. Bu nedenle özellikle talaş formundaki alüminyum atıklarının düşük enerji ve minimum emisyon ile geri kazanımını sağlayan katı hal yöntemleri tercih edilmeye başlanmıştır. Bu çalışmada, toz metalurjisi ile Al6061 talaşının vakum ortamında (10-4mbar), 30 MPa basınç altında ve farklı sıcaklıklarda (560, 580 ve 600°C), 15 dakika sinterlenerek katı hal geri kazanımları amaçlanmıştır. Sinterleme sıcaklığının malzeme özellikleri üzerindeki etkisinin incelenmesi için üretilen numunelerin Arşimet prensibine göre yoğunlukları ölçülerek, aşınma, sertlik ve eğme testlerine tabi tutulmuştur. Test sonuçları değerlendirildiğinde en yüksek yoğunluk (%97,8) 600°C’de sinterlenen numunede elde edilmiştir. Yoğunluk değerlerinin artış göstermesi mekanik özellikleri de doğrudan etkilemiştir. En yüksek sertlik değeri 58,9 HV ile 600°C’de sinterlenen numunede ölçülmüştür. Artan yoğunluk ve sertlik ile aşınma direncinde artış gözlenmiştir. Eğme testi sonucunda en yüksek eğme mukavemeti 348 MPa ile yine 600°C’de sinterlenen numunede ölçülmüştür. Sonuç olarak sıcak pres yöntemi ile 6061 talaşının katı hal geri kazanımları sağlanmış ve yüksek mukavemetli parça üretiminin mümkün olabileceği ortaya konmuştur.

Recycling of Al6061 Chip by Powder Metallurgy

In recent years the development of industry has played a significant role in the increase of environmental pollution. In order to protect the environment, the recycling of metallic wastes is getting more and more attention day by day. For this reason, solid-state methods, which provide the recycling of aluminum waste, especially in the form of chips with low energy and minimum emission, have started to be preferred. In this study, solid-state recycling was aimed by sintering Al6061 chips in a vacuum environment under 10-4 mbar, 30 MPa pressure and at different temperatures (560, 580 and 600C) for 15 minutes by powder metallurgy. In order to examine the effect of sintering temperature on material properties, the densities of the produced samples were measured according to the Archimedes principle, and they were subjected to wear, hardness and bending tests. When the test results were evaluated, the highest density was obtained in the sintered sample at 600°C with a relative density of 97,8%. The increase in density values also directly affected mechanical properties. The highest hardness value was measured in the sample sintered at 600°C with 58.9 HV. Wear performance increased with increasing hardness ratio. As a result of the bending test, the highest bending strength was measured at 348 MPa in the sample sintered at 600°C. Consequently, solid-state recovery of Al6061 chips was achieved by the hot press method, and it was demonstrated that it is possible to produce high-strength parts as well as material shaping.

___

  • [1] M. W. A. Rashid, F.F. Yacob, M.A. Lajis, M. Asyadi, A. M. Abid, E. Mohamad, and T. Ito, “A review: The potential of powder metallurgy in recycling aluminum chips (Al 6061 & Al 7075),” The Proceedings of Design & Systems Conference, no. 14-27, pp. 2301-2308, 2014.
  • [2] L. Rojas-Díaz, L. E. Verano-Jiménez, E. Muñoz-García, J. Esguerra-Arce, and A. Esguerra-Arce, “Production and characterization of aluminum powder derived from mechanical saw chip sand its processing through powder metallurgy,” Powder Technology, vol. 360, pp. 301-311, 2020.
  • [3] Global Recycling. (2021, January 14). The Global Metal Recycling Market 2020 [Online]. Available: https://global-recycling.info/archives/4094.
  • [4] A. Selmy, M. I. Abd El Aal, A. M. El-Gohry, and M. A. Taha, “Solid-state recycling of aluminum alloy (AA-6061) chips via hot extrusion followed by equal channel angular pressing (ECAP),” The Egyptian International Journal of Engineering Sciences and Technology, vol. 21, pp. 33-42, 2016.
  • [5] R. Yamanoglu, “In situ aluminum alloy coating on magnesiumby hot pressing,” Acta Metallurgica Sinica (English Letters), vol. 28, no. 8, pp. 1059-1064, 2015.
  • [6] E. Karakulak, R. Yamanoğlu, U. Erten, A. Zeren, S. Zor and M. Zeren, “Investigation of corrosion and mechanical properties of Al–Cu–SiC–xNi composite alloys,” Materials & Design, vol. 59, pp. 33-37, 2014.
  • [7] S. M. A. Rahim, M.A. Lajis and S. Arafin,“A review on recycling aluminum chips by hot extrusion process,” Procedia CIRP, vol. 26, pp. 761-766, 2015.
  • [8] M. A. Lajis, S.S. Khamis, and N. K. Yusuf, “Optimization of hot press forging parameters in direct recycling of aluminium chip (AA 6061),” Key Engineering Materials, vol. 622-623, pp. 223-230, 2014.
  • [9] S. Shamsudin, M. A. Lajis, and Z. W. Zhong, “Evolutionary in solid state recycling techniques of aluminium: a review,” Procedia CIRP, vol. 40, pp. 256-261, 2016.
  • [10] J. R. Duflou, A. E. Tekkaya, M. Haase, T. Welo, K. Vanmeensel, K. Kellens, W. Dewulf and D. Paraskevas, “Environmental assessment of solid state recycling routes for aluminium alloys: can solid state processes significantly reduce the environmental impact of aluminium recycling?,” CIRP Annuals-Manufacturing Technology, vol. 64, no. 1, pp. 37-40, 2015.
  • [11] D. Baffari, G. Buffa, G. Ingarao, A. Masnata, and Fratini L., “Aluminium sheet metal scrap recycling through friction consolidation,” Procedia Manufacturing, vol. 29, pp. 560-566, 2019.
  • [12] F. Khoshnaw, R. Yamanoglu, U. G. Basci and O. Muratal, “Pressure assisted bonding process of stainless steel on titanium alloy using powder metallurgy,” Materials Chemistry and Physics, vol. 259, pp. 1-8, 2021.
  • [13] R. Yamanoglu, “Pressureless spark plasma sintering: A perspective from conventional sintering to accelerated sintering without pressure,” Powder Metallurgy and Metal Ceramics, vol. 57, no. 9-10, pp. 513-525, 2019.
  • [14] H. H. Bakır, E. Karakulak, R. Yamanoglu ve M. Zeren “Sıcak preslenmiş Ti6Al4V alaşımı tozlarının mikroyapısal karakterizasyonu ve aşınma özellikleri,” Metal Dünyası Dergisi, ss. 70-72, 2011.
  • [15] R. Yamanoglu, I. Daoud and, E.A. Olevsky, “Spark plasma sintering versus hot pressing-densification, bending strength, microstructure, and tribological properties of Ti5Al2.5Fe alloys,” Powder Metallurgy, vol. 61, no. 2, pp. 178-186, 2018.
  • [16] Ö. Özgün, K. Aslantas, A. Ercetin, “Powder metallurgy Mg-Sn alloys: production and characterization,” Science Iranica, vol. 27, no. 3, pp. 1255-1265, 2020.
  • [17] Z. Doni, A.C. Alves, F. Toptan, J.R. Gomes, A. Ramalho, M. Buciumeanu, L. Palaghian, and F. S. Silva, “Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys,” Materials and Design, vol. 52, pp. 47-57, 2013.
  • [18] A. Ercetin, “Application of the hot press method to produce new Mg alloys: characterization, mechanical properties, and effect of Al addition,” Journal of Materials Engineering and Performance, vol. 30, no. 6, pp. 4254-4262, 2021.
  • [19] M. Pul, “Alüminyum 7075 matrisli kompozitlerde SiC, B4C ve TiB2 takviye elemanlarının mekanik özelliklere etkilerinin karşılaştırılması,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 7, ss. 180-193, 2019.
  • [20] D. Paraskevas, K. Vanmeensel, J. Vleugels, W. Dewulf, and J.R. Duflou, “The use of spark plasma sintering to fabricate a two-phase material from blended aluminium alloy scrap and gas atomized powder,” Procedia CIRP, vol. 26, pp. 455-460, 2015.
  • [21] A. Ercetin, Ö. Özgün, and K. Aslantas, “Investigation of mechanical properties of Mg5Sn-xZn alloys produced through new method in powder metallurgy,” Journal of Testing and Evaluation, vol. 49, no. 5, pp. 3506-3518, 2021.
  • [22] A. Jha, S. V. Prasad, and G. S. Upadhyaya, “Preparation and properties of 6061 aluminum alloys/graphite composites by PM route,” Powder Metallurgy, vol. 32, no. 4, pp. 309-312, 1989.
  • [23] V. K. Sharma, V. Kumar and R. S. Joshi, “Investigation of rare earth particulate on tribological and mechanical properties of Al-6061 alloy composites for aerospace application,” Journal of Materials Research and Technology, vol. 8, no. 4, pp. 3504-3516, 2019.
  • [24] H. Karakoç, Ş. Karabulut, and R. Çıtak, “Study on mechanical and ballistic performances of boron carbide reinforced Al6061 aluminum alloy produced by powder metallurgy,” Composites Part B: Engineering, vol. 148, pp. 68-80, 2018.
  • [25] H. Karakoç, İ. Ovalı, S. Dündar, and R. Çıtak, “Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy,” Journal of Materials Research and Technology, vol. 8, no. 6, pp. 5348-5361, 2019.
  • [26] M. S. Surya, “Effect of SiC weight percentage and sintering duration on microstructural and mechanical behaviour of Al6061/SiC composites produced by powder metallurgy technique,” Silicon, 2021, doi: https://doi.org/10.1007/s12633-021-01053-z.
  • [27] H. P. Kumar, and M. A. Xavior, “Effect of graphene addition on flexural properties of al 6061 nano composites,” Materials Today: Proceedings, vol. 4, no. 8, pp. 8127-8133, 2017.
  • [28] S. A. Bhaskar Raju, A. R. K. Swamy, A. Ramesha, “Mechanical characterization of Al6061-tungsten carbide composites using powder metallurgy technique,” International Journal of Engineering Applied Sciences and Technology, vol. 4, no.7, pp. 325-331, 2019.
  • [29] S. Pournaderi, and F. Akhlaghi, “Wear behaviour of Al6061-Al2O3 composites produced by in-situ powder metallurgy,” Powder Technology, vol. 313, pp. 184-190, 2017.
  • [30] S. Y. Yu, H. Ishii, K. Tohgo, Y. T. Cho and D. Diao, “Temperature dependence of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061 aluminum alloy composite,” Wear, vol. 213, no. 1-2, pp. 21-28, 1997.
  • [31] A. M. Al-Qutub, I. M. Allam, and T. W. Qureshi, “Effect of sub-micron Al2O3 concentration on dry wear properties of 6061 aluminum based composite,” Journal of Material Processing Technology, vol. 172, no. 3, pp. 327-331, 2006.
  • [32] C. M. A. Partheeban, M. Rajendran, S. C. Vettivel, S. Suresh, and J. B. Raj, “Wear behaviour of nano graphite reinforced Al6061-10TiB2 hybrid composite using powder metallurgy,” International Journal of Applied Engineering Research, vol. 10, no. 2, pp. 2761-2770, 2015.
  • [33] M. Khan, R. U. Din, A. Wadood, W. H. Syed, S. Akhtar, R. E. Aune, “Effect of graphene nanoplatelets on the physical and mechanical properties of Al6061 in fabricated and T6 thermal conditions,” Journal of Alloys and Compounds, vol. 790, pp. 1076-1091, 2019.
  • [34] D. Chu, Y. Ma, and T. Penjun, “Bending properties and failure mechanism of continuous W-core-SiC fiber-reinforced 2024 and 6061 aluminum matrix composites,” Journal of Materials Engineering and Performance, vol. 29, no. 10, pp. 6295-6306, 2020.