Jeotermal Enerji Kaynaklı Ara Isıtmalı Organik Rankine Çevriminin Konvansiyonel ve İleri Ekserji Analizi

Bu çalışmada, iş akışkanı olarak R152a kullanan jeotermal destekli ara ısıtmalı organik Rankine çevriminin konvansiyonel ve ileri ekserji analizleri yapılmıştır. Sistemin geliştirme potansiyelini belirlemek için ekserji yıkımının önlenebilir/kaçınılamaz kısımları, komponentler arasındaki etkileşim hakkında detaylıca bir analiz yapabilmek için de içsel/dışsal kısımları belirlenmiştir. Ayrıca yoğuşturucu ve buharlaştırıcı basınçlarının sistem performansı üzerindeki etkisi incelenmiştir. Ekserji ve enerji verimleri sırasıyla %50.69 ve %14.04 olarak hesaplanmıştır. İleri analiz sonuçlarına göre sistem çok büyük oranda kaçınılmaz (%95.04) ve içsel (%86.6) ekserji yıkımlarına sahiptir. Buradan sistemin sadece %5’lik bir geliştirme potansiyeli olduğu görülmektedir. Türbinlerdeki tersinmezliklerin tamamı dışsal iken, pompa ve buharlaştırıcıdaki tersinmezliklerin hepsi kendilerinden kaynaklanmaktadır. Toplam içsel ekserjikısmının en yüksek yüzdesi yaklaşık %93 ile buharlaştırıcıda meydana gelmiştir. En yüksek ekserji yıkımı buharlaştırıcıda olmakla birlikte bu bileşendeki geliştirme potansiyeli sıfırdır. Türbinlerdeki önlebilir ekserji yıkımı, toplam önlenebilir kısmın  %85.34’üne eşittir. Sonuçlar, sistemin performansını geliştirmek için öncelikle odaklanılması gereken komponetlerin alçak ve yüksek basınç türbinleri olduğu göstermektedir.

Conventiaonal and Advanced Exergy Analysis of Geothermal Energy Powered Reheat Organic Rankine Cycle

In this study, conventional and advanced exergy analysis have been carried out on a geothermal powered reheat organic Rankine cycle using R152a as a working fluids. The avoidable/unavoidable parts of the exergy destraction rate was obtained to decide the imporvement potential of the system and endogeious/exogenious parts of the exergy destruction rate was decided for carring out a detail analysis on the interaction among the components. Moreover, the effects of the condenser and evaporator pressures on the system performance were invesitigated. The exergy and energy efficiencies were calculated to be 50.69% and 14.04%, respectively. According to the advanced exergy analysis results, system has a large share of unavoidable (95.04%) and endogenious (86.6%) exergy destruction rates. It is seen that only a 5% of an improvement potential of the system exists. While whole exergy destruction rate in the turbines is falling into the part of exogenious part, the exergy destruction rates of the pump and evaporator results from the components’ themselves. The largest share of the endogenious exergy destrucation rate occurs in the evaporator with 93%. In conjunction with that the largest exergy decstruction occuring in the evaporator, its improvement potential is zero. The exergy destruction rates in the turbines is equal to 85.34% of the total avoidable part of the destruction. The results show that the low and high pressure turbines are the primary components to focus on to improve the system performances.

___

  • [1] A. Ustaoglu, J. Okajima, X. R. Zhang, ve S. Maruyama, “Assessment of a solar energy powered regenerative organic Rankine cycle using compound parabolic involute concentrator,” Energy Convers. Manag., vol. 184, pp. 661–670, Mar. 2019.
  • [2] R. Şahin, S.Ata, ve A. Kahraman, “Organik Rankine Çevriminde Farklı Tip Akışkanlarda Türbin Giriş Sıcaklığı ve Basıncının Sistem Bileşenlerindeki Tersinmezlik Değerlerine Etkisinin Belirlenmesi Determination of Impact of Turbine Input Temperature and Pressure on the Irreversibility Values,” Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Derg., vol. 33, no. June, pp. 225–236, 2018.
  • [3] T. K. Gogoi ve K. Talukdar, “Exergy based parametric analysis of a combined reheat regenerative thermal power plant and water-LiBr vapor absorption refrigeration system,” Energy Convers. Manag., vol. 83, pp. 119–132, 2014.
  • [4] A. Khaliq ve S. C. Kaushik, “Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat,” Appl. Energy, vol. 78, no. 2, pp. 179–197, 2004.
  • [5] P. Gang, L. Jing, ve J. Jie, “Design and analysis of a novel low-temperature solar thermal electric system with two-stage collectors and heat storage units,” Renew. Energy, vol. 36, no. 9, pp. 2324–2333, 2011.
  • [6] F. Petrakopoulou, G. Tsatsaronis, T. Morosuk, ve A. Carassai, “Conventional and advanced exergetic analyses applied to a combined cycle power plant,” Energy, vol. 41, no. 1, pp. 146–152, 2012.
  • [7] A. Gungor, A. Hepbasli, ve H. Gunerhan, “Enhanced exergy analyses of a gas engine heat pump (GEHP) dryer for medicinal and aromatic plants,” Int. J. Exergy, vol. 18, no. 1, pp. 1–21, 2015.
  • [8] E. Bozoglan, Z. Erbay, A. Hepbasli, ve H. Gunerhan, “Splitting the exergy destructions of an olive oil refining plant into avoidable and unavoidable parts based on actual operational data,” Int. J. Exergy, vol. 21, no. 3, p. 277, 2016.
  • [9] V. Jain, G. Sachdeva, ve S. S. Kachhwaha, “Comparative performance study and advanced exergy analysis of novel vapor compression-absorption integrated refrigeration system,” Energy Convers. Manag., vol. 172, no. June, pp. 81–97, 2018.
  • [10] E. Gholamian, P. Hanafizadeh, ve P. Ahmadi, “Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system,” Appl. Therm. Eng., vol. 137, pp. 689–699, 2018.
  • [11] T. Morosuk ve G. Tsatsaronis, “A new approach to the exergy analysis of absorption refrigeration machines,” Energy, vol. 33, no. 6, pp. 890–907, 2008.
  • [12] S. Gong ve K. Goni Boulama, “Parametric study of an absorption refrigeration machine using advanced exergy analysis,” Energy, vol. 76, pp. 453–467, 2014.
  • [13] A. Ustaoglu, M. Alptekin, M. E. Akay, ve R. Selbaş, “Enhanced exergy analysis of a waste heat powered ejector refrigeration system for different working fluids,” Int. J. Exergy, vol. 24, no. 2–4, 2017.
  • [14] T. Morosuk ve G. Tsatsaronis, “Advanced exergetic evaluation of refrigeration machines using different working fluids,” Energy, vol. 34, no. 12, pp. 2248–2258, 2009.
  • [15] A. Mortazavi ve M. Ameri, “Conventional and advanced exergy analysis of solar flat plate air collectors,” Energy, vol. 142, pp. 277–288, 2018.
  • [16] F. Petrakopoulou, G. Tsatsaronis, T. Morosuk, ve A. Carassai, “Conventional and advanced exergetic analyses applied to a combined cycle power plant,” Energy, vol. 41, no. 1, pp. 146–152, 2012.
  • [17] A. K. Mossi Idrissa ve K. Goni Boulama, “Advanced exergy analysis of a combined Brayton/Brayton power cycle,” Energy, vol. 166, pp. 724–737, 2019.
  • [18] S. Fellaou ve T. Bounahmidi, “Analyzing thermodynamic improvement potential of a selected cement manufacturing process: Advanced exergy analysis,” Energy, vol. 154, pp. 190–200, 2018.
  • [19] Z. Wang, W. Xiong, D. S. K. Ting, R. Carriveau, ve Z. Wang, “Conventional and advanced exergy analyses of an underwater compressed air energy storage system,” Appl. Energy, vol. 180, pp. 810–822, 2016.
  • [20] M. Fallah, H. Siyahi, R. A. Ghiasi, S. M. S. Mahmoudi, M. Yari, ve M. A. Rosen, “Comparison of different gas turbine cycles and advanced exergy analysis of the most effective,” Energy, vol. 116, pp. 701–715, 2016.
  • [21] H. Nami, A. Nemati, ve F. Jabbari Fard, “Conventional and advanced exergy analyses of a geothermal driven dual fluid organic Rankine cycle (ORC),” Appl. Therm. Eng., vol. 122, pp. 59–70, 2017.
  • [22] H. Gökgedik, M. Yürüsoy, ve A. Keçebaş, “Improvement potential of a real geothermal power plant using advanced exergy analysis,” Energy, vol. 112, pp. 254–263, 2016.
  • [23] A. Keçebaş ve H. Gökgedik, “Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis,” Energy, vol. 88, pp. 746–755, 2015.
  • [24] O. Özkaraca, A. Keçebaş, ve C. Demircan, “Comparative thermodynamic evaluation of a geothermal power plant by using the advanced exergy and artificial bee colony methods,” Energy, vol. 156, pp. 169–180, 2018.
  • [25] T. Koroglu ve O. S. Sogut, “Conventional and advanced exergy analyses of a marine steam power plant,” Energy, vol. 163, pp. 392–403, 2018.
  • [26] H. Khosravi, G. R. Salehi, ve M. T. Azad, “Design of structure and optimization of organic Rankine cycle for heat recovery from gas turbine: The use of 4E, advanced exergy and advanced exergoeconomic analysis,” Appl. Therm. Eng., vol. 147, pp. 272–290, 2019.
  • [27] J. Galindo, S. Ruiz, V. Dolz, ve L. Royo-Pascual, “Advanced exergy analysis for a bottoming organic rankine cycle coupled to an internal combustion engine,” Energy Convers. Manag., vol. 126, pp. 217–227, 2016.
  • [28] J. Galindo, S. Ruiz, V. Dolz, ve L. Royo-Pascual, “Advanced exergy analysis for a bottoming organic rankine cycle coupled to an internal combustion engine,” Energy Convers. Manag., vol. 126, pp. 217–227, 2016.
  • [29] ASHRAE, “Designation and Safety Classification of Refrigerants, Addendum r to ANSI/ASHRAE Standard 34-2013,” ANSI/ASHRAE Standard 34-2010. 2015.
  • [30] Ö. Kaşka, “Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry,” Energy Convers. Manag., vol. 77, pp. 108–117, 2014.
  • [31] L. Garousi Farshi, A. H. Mosaffa, C. A. Infante Ferreira, ve M. A. Rosen, “Thermodynamic analysis and comparison of combined ejector-absorption and single effect absorption refrigeration systems,” Appl. Energy, vol. 133, pp. 335–346, 2014.
  • [32] Y. a. Çengel, “Thermodynamics: An Engineering Approach,” McGraw-Hill, 2004.
  • [33] A. Bejan, Advanced Engineering Thermodynamics. 2016.
  • [34] E. K. Akpinar ve A. Hepbasli, “A comparative study on exergetic assessment of two ground-source (geothermal) heat pump systems for residential applications,” Build. Environ., vol. 42, no. 5, pp. 2004–2013, 2007.
  • [35] M. A. Rosen ve I. Dincer, “Exergy as the confluence of energy, environment and sustainable development,” Exergy, An Int. J., vol. 1, no. 1, pp. 3–13, 2001.
  • [36] T. Morosuk, G. Tsatsaronis, ve C. Zhang, “Conventional thermodynamic and advanced exergetic analysis of a refrigeration machine using a Voorhees’ compression process,” Energy Convers. Manag., vol. 60, pp. 143–151, 2012.
  • [37] F. Cziesla, G. Tsatsaronis, ve Z. Gao, “Avoidable thermodynamic inefficiencies and costs in an externally fired combined cycle power plant,” Energy, vol. 31, no. 10–11, pp. 1472–1489, 2006.
  • [38] E. W. Lemmon, M. L. Huber, ve M. O. McLinden, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.0,” Phys. Chem. Prop. …, 2010.