CO2 Gaz Sensörü Uygulamaları için CuO İnce Film Üretimi ve Karakterizasyonu

Katma değeri yüksek, ileri teknoloji ve yüksek maliyet gerektiren malzemelere alternatif olarak ince film kaplama yöntemleri ile eşdeğer yüzey özelliklerine sahip ekonomik malzemeler üretilebilmektedir. İnce film biriktirme yapılarak farklı sensörler, fotovoltaik hücreler, elektronik uygulamalar ve filtreler gibi çeşitli teknolojik malzemelerin temelini oluşturan yarı iletken yüzeyler üretmek mümkündür. Çeşitli fosil yakıtlar ve atıkların yanması ile farklı gazlar açığa çıkmaktadır. Çevreye zarar vermekte ve sağlığa olumsuz etkileri olan bu gazların tespit edilmesi gerekmektedir. CuO yarıiletken ince filmler karbondioksit, etanol, amonyak gibi farklı gazların belirlenmesi ve gerekli uyarıların verilmesinde gaz sensörü olarak kullanımı amacı üzerine çalışmalar yapılmaktadır. Bu çalışma kapsamında cam yüzeyler üzerine CuO yarıiletken ince filmler biriktirilerek gaz sensörü olarak kullanımı test edilmiştir. CuO yarı iletken ince filmlerin CO2 gazının tespitinde alternatif bir gaz sensörü olarak kullanılabileceği tespit edilmiştir.

Production and Characterization of CuO Thin Films for CO2 Gas Sensor Applications

As an alternative to materials with high added value, requiring advanced technology and high cost, economical materials with equivalent surface properties can be produced by thin film coating methods. It is possible to produce semiconductor surfaces that form the basis of various technological materials such as different sensors, photovoltaic cells, electronic applications and filters by thin film deposition. Different gases are released with the combustion of various fossil fuels and wastes. These gases, which harm the environment and have negative effects on health, need to be determined. Studies are carried out on the use of CuO semiconductor thin films as gas sensors for the determination of different gases such as carbon dioxide, ethanol, ammonia. In this study, CuO semiconductor thin films were deposited on glass surfaces and its use as a gas sensor was tested. It has been determined that CuO semiconductor thin films can be used as an alternative gas sensor in the detection of CO2 gas

___

  • [1] S. Zhao, Y. Shen, X. Yan, P. Zhou, Y. Yin, R. Lu, C. Han, B. Cui, and D. Wei, “Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor,” Sensors Actuators B Chem., vol. 286, pp. 501–511, May 2019.
  • [2] J. Liu, L. Zhang, J. Fan, B. Zhu, and J. Yu, “Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres,” Sensors Actuators B Chem., vol. 331, p. 129425, Mar. 2021.
  • [3] P. G. Choi, N. Izu, N. Shirahata, and Y. Masuda, “Improvement of sensing properties for SnO2 gas sensor by tuning of exposed crystal face,” Sensors Actuators B Chem., vol. 296, p. 126655, Oct. 2019.
  • [4] Y. Kong, Y. Li, X. Cui, L. Su, D. Ma, T. Lai, L. Yao, X. Xiao, and Y. Wang, “SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review,” Nano Mater. Sci., vol. 4, no. 4, pp. 339–350, Dec. 2022.
  • [5] U. T. Nakate, R. Ahmad, P. Patil, Y. T. Yu, and Y. B. Hahn, “Ultra thin NiO nanosheets for high performance hydrogen gas sensor device,” Appl. Surf. Sci., vol. 506, p. 144971, Mar. 2020.
  • [6] P. Li, C. Cao, Q. Shen, B. Bai, H. Jin, J. Yu, W. Chen, and W. Song, “Cr-doped NiO nanoparticles as selective and stable gas sensor for ppb-level detection of benzyl mercaptan,” Sensors Actuators B Chem., vol. 339, p. 129886, Jul. 2021.
  • [7] Y. Gui, K. Tian, J. Liu, L. Yang, H. Zhang, and Y. Wang, “Superior triethylamine detection at room temperature by (-112) faceted WO3 gas sensor,” J. Hazard. Mater., vol. 380, p. 120876, Dec. 2019.
  • [8] Q. Hu, J. He, J. Chang, J. Gao, J. Huang, and L. Feng, “Needle-Shaped WO3 Nanorods for Triethylamine Gas Sensing,” ACS Appl. Nano Mater., vol. 3, no. 9, pp. 9046–9054, Sep. 2020.
  • [9] U. T. Nakate, P. Patil, B. Ghule, Y. T. Nakate, S. Ekar, R. C. Ambare, and R. S. Mane, “Room temperature LPG sensing properties using spray pyrolysis deposited nano-crystalline CdO thin films,” Surfaces and Interfaces, vol. 17, p. 100339, Dec. 2019.
  • [10] F. M. Othman, A. A. A. Hamead, and M. H. A. Wahid, “Fabrication and Characterization of CdO Gas Sensor with Tube Shape,” Mater. Sci. Forum, vol. 1021, pp. 317–326, 2021.
  • [11] H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu, Z. Xie, F. Guo, D. Chen, R. Zhang, and Y. Zheng, “A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets,” Sensors Actuators B Chem., vol. 337, p. 129783, Jun. 2021.
  • [12] L. Hou, C. Zhang, L. Li, C. Du, X. Li, X. F. Kang, and W. Chen, “CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance,” Talanta, vol. 188, pp. 41–49, Oct. 2018.
  • [13] V. Ambardekar, T. Bhowmick, P. P. Bandyopadhyay, and S. B. Majumder, “Ethanol and acetone sensing properties of plasma sprayed copper oxide coating,” J. Phys. Chem. Solids, vol. 160, p. 110333, Jan. 2022.
  • [14] T. Hemalatha, S. Akilandeswari, T. Krishnakumar, S. G. Leonardi, G. Neri, and N. Donato, “Comparison of Electrical and Sensing Properties of Pure, Sn- and Zn-Doped CuO Gas Sensors,” IEEE Trans. Instrum. Meas., vol. 68, no. 3, pp. 903–912, Mar. 2019.
  • [15] J. M. Rzaij and N. F. Habubi, “Room temperature gas sensor based on La2O3 doped CuO thin films,” Appl. Phys. A Mater. Sci. Process., vol. 126, no. 7, pp. 1–10, Jul. 2020.
  • [16] T. Bhowmick, A. Ghosh, S. Nag, and S. B. Majumder, “Sensitive and selective CO2 gas sensor based on CuO/ZnO bilayer thin-film architecture,” J. Alloys Compd., vol. 903, p. 163871, May 2022.
  • [17] G. Chaloeipote, R. Prathumwan, K. Subannajui, A. Wisitsoraat, and C. Wongchoosuk, “3D printed CuO semiconducting gas sensor for ammonia detection at room temperature,” Mater. Sci. Semicond. Process., vol. 123, p. 105546, Mar. 2021.
  • [18] A. Rydosz, “Amorphous and nanocrystalline magnetron sputtered CuO thin films deposited on low temperature cofired ceramics substrates for gas sensor applications,” IEEE Sens. J., vol. 14, no. 5, pp. 1600–1607, 2014.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü