2-Formilpiridin N(4)-Metil Tiyosemikarbazon Ve 2-Asetilpiridin N(4)-Etil Tiyosemikarbazon Moleküllerinin Teorik Olarak İncelenmesi

Bu çalışmada (HFo4M) 2-Formilpiridin N(4)-metil tiyosemikarbazon (C8H10N4S) ve (HAc4E) 2-Asetilpiridin N(4)-etil tiyosemikarbazon (C10H14N4S) moleküllerinin yapısal, spektroskopik, elektronik ve doğrusal olmayan optik özellikleri kuantum kimyasal hesaplamaları metodları kullanılarak incelendi. Optimize edilmiş geometri için hesaplanan teorik sonuçlar deneysel değerler ile karşılaştırıldı ve oldukça uyum içinde oldukları görüldü. HFo4M ve HAc4E molekülleri için statik yüksek mertebe kutuplanabilirlik parametreleri sırayla 23.6815×10-30 ve 20.838×10-30 esu olarak elde edilmiş ve doğrusal olmayan optik malzemeler için umut verici bir aday olduğu görülmüştür. HFo4M ve HAc4E molekülleri için B3LYP yöntemi ile 2.1630 ve 2.2556 eV olarak hesaplanan HOMO ve LUMO arasındaki enerji aralıklarının nispeten düşük olması doğrusal olmayan optik özelliklerin belirgin olmasına katkı sağladığı görülmüştür.

Theoretical Investigation Of 2-Formylpyridine N(4)-Methyl Thiosemicarbazone And 2-Acetylpyridine N(4)-Ethyl Thiosemicarbazone Molecules

In this study, the structural, spectroscopic, electronic and nonlinear optical properties of (HFo4M) 2-Formylpyridine N(4)-methyl thiosemicarbazone (C8H10N4S) and (HAc4E) 2-Acetylpyridine N(4)-ethyl thiosemicarbazone (C10H14N4S) molecules were investigated using quantum chemical calculation methods. The theoretical results calculated for the optimized geometry were compared with the experimental values and they were found to be in good agreement. Static high-order polarizability parameters for HFo4M and HAc4E molecules were obtained as 23.6815×10-30 and 20.838×10-30 esu, respectively, and it was found to be a promising candidate for nonlinear optical materials. The relatively low energy gaps between HOMO and LUMO, calculated as 2.1630 and 2.2556 eV by the B3LYP method for HFo4M and HAc4E molecules has been contributed a little to the clarity of the nonlinear optical properties.

___

  • [1] S. Çobanoğlu, “Substitue tiyosemikarbazonlar ve tiyadiazollerin sentezi,” Yüksek Lisans tezi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı Organik Kimya Programı, Yıldız Teknik Üniversitesi, İstanbul, Türkiye, 2005.
  • [2] M.C. Rodríguez-Argüelles, E.C. López-Silva, J. Sanmartín, P. Pelagatti and F. Zani, “Copper complexes of imidazole-2-, pyrrole-2-and indol-3-carbaldehyde thiosemicarbazones: inhibitory activity against fungi and bacteria,” Journal of Inorganic Biochemistry, vol. 99(11), pp. 2231-2239, 2005.
  • [3] D.L. Klayman, J.F. Bartosevich, T.S. Griffin, C.J. Mason, and J.P. Scovill, “2-Acetylpyridine thiosemicarbazones. 1. A new class of potential antimalarial agents,” Journal of Medicinal Chemistry, vol. 22(7), pp. 855-862, 1979.
  • [4] J.P. Scovill, D.L.Klayman, and C.F. Franchino, “2-Acetylpyridine thiosemicarbazones. 4. Complexes with transition metals as antimalarial and antileukemic agents,” Journal of Medicinal Chemistry, vol. 25(10), pp. 1261-1264, 1982.
  • [5] T.S. Lobana, R. Sharma, G. Bawa, and S. Khanna, “Bonding and structure trends of thiosemicarbazone derivatives of metals—an overview,” Coordination Chemistry Reviews, vol. 253(7-8), pp. 977-1055, 2009.
  • [6] M. Baldini, M. Belicchi-Ferrari, F. Bisceglie, G. Pelosi, S. Pinelli, and P. Tarasconi, “Cu (II) complexes with heterocyclic substituted thiosemicarbazones: the case of 5-formyluracil. Synthesis, characterization, x-ray structures, DNA interaction studies, and biological activity,” Inorganic Chemistry, vol. 42(6), pp. 2049-2055, 2003.
  • [7] M.R. Mlahi, S.J. Azhari, A.A. El-Asmy, and M.M. Mostafa, “Comparative spectroscopic and DFT calculations of binary and ternary complexes derived from 4-allyl-1-(2-hydroxybenzoyl) thiosemicarbazide (L1) and 2, 2′-dipyridyl,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 134, pp. 465-472, 2015.
  • [8] T. A. Yousef, O.A. El-Gammal, S.F. Ahmed, and G.A. Abu El-Reash, “Structural, DFT and biological studies on Co(II) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazide,” Journal of Molecular Structure, vol. 1076, pp. 227–237, 2014.
  • [9] T.S. Lobana, S. Indoria, M. Sharma, J. Nandi, A.K. Jassal, M.S. Hundal, and A. Castineiras, “Synthesis, structure and spectroscopy of mono- and di-nuclear copper (I) complexes incorporating anionic thiophene based thiosemicarbazones-first examples,” Polyhedron, vol. 80, pp. 34–40, 2014.
  • [10] A. Castiñeiras, I. García-Santos, S. Nogueiras, I. Rodríguez-González, and R. Rodríguez-Riobó, “Supramolecular interactions in biologically relevant compounds. 2-Pyrazineformamide thiosemicarbazones and some products of their cyclization,” Journal of Molecular Structure, vol. 1074, pp. 1-18, 2014.
  • [11] R. Dennington, T. Keith, and J. Millam, Semichem Inc. Shawnee Mission KS, GaussView, Version 5, 2009.
  • [12] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
  • [13] D.X. West, G.A. Bain, R.J. Butcher, J.P. Jasinski, Y. Li, R.Y. Pozdniakiv, and S. Hernández-Ortega, “Structural studies of three isomeric forms of heterocyclic N (4)-substituted thiosemicarbazones and two nickel (II) complexes,” Polyhedron, vol. 15(4), pp. 665-674, 1996.
  • [14] H. Beraldo, R. Lima, L.R. Teixeira, A.A. Moura, and D.X. West, “Crystal structures and IR, NMR and UV spectra of 3-formyl- and 3-acetylpyridine N(4)-methylthiosemicarbazones,” Journal of Molecular Structure, vol. 553, pp. 43-48, 2000.
  • [15] M. Ahmadi, J.T. Mague, A. Akbari, and R. Takjoo, “Dianion N1, N4-bis (salicylidene)-S-allyl- thiosemicarbazide complexes: synthesis, structure, spectroscopy and thermal behavior,” Polyhedron, vol. 42(1), pp. 128-134, 2012.
  • [16] L.C. Dias, G.M. de Lima, C.B. Pinheiro, M.A.C. Nascimento, and R.S. Bitzer, “Molecular and supramolecular properties of nitroaromatic thiosemicarbazones: synthesis, spectroscopy, X-ray structure elucidation and DFT calculations,” Journal of Molecular Structure, vol. 1131, pp. 79-86, 2017.
  • [17] M.R. Anoop, P.S. Binil, S. Suma, M.R. Sudarsanakumar, Sheena Mary. Y, Hema Tresa Varghese, C. Yohannan Panicker, “Vibrational spectroscopic studies and computational study of ethyl methyl ketone thiosemicarbazone”, Journal of Molecular Structure, vol. 969, pp.48–54, 2010.
  • [18] A. Pekparlak, O. Tamer, S.D. Kanmazalp, N. Berber, M. Arslan, D. Avcı, N. Dege, E. Tarcan, Y. Atalay, “Crystal structure, spectroscopic (FT-IR, 1 H and 13C NMR) characterization and density functional theory calculations on Ethyl 2- (dichloromethyl)-4-methyl-1-phenyl-6-thioxo-1,6-dihydropyrimidine-5-carboxylate”, Journal of Molecular Structure, vol. 1171, pp.762-770, 2018.
  • [19] K. Nomiya, K. Sekino, M. Ishikawa, A. Honda, M. Yokoyama, N.C. Kasuga, H. Yokoyama, S. Nakano, and K. Onodera, “Syntheses, crystal structures and antimicrobial activities of monomeric 8-coordinate, and dimeric and monomeric 7-coordinate bismuth (III) complexes with tridentate and pentadentate thiosemicarbazones and pentadentate semicarbazone ligands,” Journal of inorganic Biochemistry, vol. 98(4), pp. 601-615, 2004.
  • [20] K. Pihlaja, E. Kleinpete, “Carbon-13 Nmr Chemical Shifts in Structural and Stereochemical Analysis (Methods in Stereochemical Analysis)”, New York, USA, Wiley-Blackwell, 1994, pp. 379.
  • [21] L.T. Cheng, W. Tam, S.H. Stevenson, G.R. Meredith, G. Rikken, S.R.Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” The Journal of Physical Chemistry, vol. 95, 10631–10643, 1991.
  • [22] Ö. Tamer, D. Avcı, and Y. Atalay, “Quantum chemical characterization of N-(2- hydroxybenzylidene) acetohydrazide (HBAH): A detailed vibrational and NLO analysis,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 117, pp. 78-86, 2014.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü