Güç Sistemlerinde Sürekli ve Geçici Durum Gerilim Kararlılığının UPFC-Yakıt Hücresi ile İncelenmesi

Güç sistemlerinin sürekli ve geçici durum çalışmalarında Esnek AC İletim Sistemi (FACTS) cihazları tercih edilmektedir. FACTS cihazları içerisinde kontrol etme yeteneği en güçlü olan Birleştirilmiş Güç Akışı Kontrolü (UPFC)’dir. UPFC bara gerilimlerini reaktif güce bağlı olarak kontrol ederken, iletim hattını empedans ve akıma göre kontrol etmektedir. Bu çalışmada, Uluslararası Elektrik Elektronik Mühendisliği (IEEE) 14 baralı güç sisteminde UPFC’nin statik ve dinamik gerilim kararlılığı analizleri gerçekleştirilmiştir. Sürekli ve geçici durum için gerilim kararlılığı çalışma limitlerinin geliştirilmesi ve sistemin kararlı bölgede kalması için UPFC ile birlikte Enerji Depolama Sistemi (EDS) elemanlarından yakıt hücresi kullanılmıştır. UPFC-EDS ile sistemin gerilim-maksimum yüklenme parametre değerlerinin yanı sıra bara gerilim profilleri analiz edilmiştir. UPFC ile yakıt hücresinin birlikte kullanılması durumunda sistemin yüklenme parametre değerinin arttığı ve bara gerilim profillerinin iyileştiği görülmüştür.

Investigation with UPFC-Fuel Cellof Steady and Transient Voltage Stability in Power Systems

Flexible AC Transmission System (FACTS) devices are preferred for steady state and transient state of power systems. Unified Power Flow Control (UPFC) has best control capability among FACTS devices. While UPFC controls bus voltages depending on reactive power, it controls the transmission line according to impedance and current. In this paper, static and dynamic voltage stability analyzes of UPFC were tested in the International Electric Electronic Engineering (IEEE) 14 bus power system. Fuel cell, which is a kind of Energy Storage System (ESS) devices, was used together with UPFC to improve the voltage stability operating limits for the steady state and transient state and to keep the system in the stable region. Besides, the voltage-maximum loading parameter values of the system, the bus voltage profiles were analyzed with the UPFC-EDS. In case of using UPFC and fuel cell together, it was observed that the loading parameter value of the system increased and the bus voltage profiles improved.

___

  • [1] D. B. Valle ve P. B. Araujo, “The influence of GUPFC FACTS device on small signal stability of the electrical power systems,” International Journal of Electrical Power & Energy Systems, c. 65, ss. 299-306, 2015.
  • [2] R. K. Pandey ve N. K. Singh, “UPFC control parameter identification for effective power oscillation damping,” International Journal of Electrical Power & Energy Systems, c. 31, s. 6, ss. 269-276, 2009.
  • [3] Z. H. U. Xinyao, J. I. N. Meng, K. O. N. G. Xiangping, Z. H. A. O. Jingbo, L. I. U. Jiankun ve Z. H. O. U. Qian, “Subsynchronous resonance and its mitigation for power system with unified power flow controller,” Journal of Modern Power Systems and Clean Energy, c. 6, s. 1, ss. 181-189, 2018.
  • [4] J. Ling, H. Ji, C. Yu, S. Wang, D. Yu ve S. Jiang, “Design of UPFC sub-synchronous oscillation damping controller based on modal control,” In 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17-19 September 2018, ss. 1439-1443.
  • [5] D. K. Raju, B. S. Umre, A. S. Junghare ve B. C. Babu, “Mitigation of subsynchronous resonance with fractional-order PI based UPFC controller,” Mechanical Systems and Signal Processing, c. 85, ss. 698-715, 2017.
  • [6] M. R. Qader, “Design and simulation of a different innovation controller-based UPFC (unified power flow controller) for the enhancement of power quality,” Energy, c. 89, ss. 576-592, 2015.
  • [7] Y. U. A. N. Yubo, L. I. Peng, K. O. N. G. Xiangping, L. I. U. Jiankun, L. I. Qun ve W. A. N. G. Ye, “Harmonic influence analysis of unified power flow controller based on modular multilevel converter,” Journal of Modern Power Systems and Clean Energy, c. 4, s. 1, ss. 10-18, 2016.
  • [8] L. Jiankun, Z. Ningyu, Z. Xinyao, X. Ke ve C. Zhe, “Method of calculating the maximum transmission capability with unified power flow controller,” The Journal of Engineering, c. 2017, s. 13, ss. 1963-1968, 2017.
  • [9] B. Xu ve A. Abur, “State estimation of systems with UPFCs using the interior point method,” IEEE Transactions on Power Systems, c. 19, s. 3, ss. 1635-1641, 2004.
  • [10] C. V. Suresh ve S. S. Raju, “Mathematical modeling and analysis of a generalized unified power flow controller with device rating methodology,” International Journal on Electrical Engineering and Informatics, c. 7, s. 1, ss. 59-78, 2015.
  • [11] M. M. Hosseini-Biyouki, S. Jashfar, B. Vahidi ve H. Askarian-Abyaneh, “Impact of optimal unified power flow controller in electrical transmission systems in reducing transmission cost,” Electric Power Components and Systems, c. 45, s. 16, ss. 1762-1772, 2017.
  • [12] M. A. Kamarposhti ve H. Lesani, “Effects of STATCOM, TCSC, SSSC and UPFC on static voltage stability,” Electrical Engineering, c. 93, s. 1, ss. 33-42, 2011.
  • [13] M. A. Kamarposhti, M. Alinezhad, H. Lesani ve N. Talebi, “Comparison of SVC, STATCOM, TCSC, and UPFC controllers for static voltage stability evaluated by continuation power flow method,” In 2008 IEEE Canada Electric Power Conference, 2008, ss. 1-8.
  • [14] R. Natesan ve G. Radman, “Effects of STATCOM, SSSC and UPFC on voltage stability,” In Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the, 2004, ss. 546-550.
  • [15] C. A. Canizares, F. L. Alvarado, C. L. DeMarco, I. Dobson ve W. F. Long, “Voltage collapse and transient energy function analyses of AC/DC systems,” Doktora tezi, Wisconsin Üniversitesi, Madison, USA, 1991.
  • [16] B. Yildirim ve M. T. Gencoglu, “Oscillatory stability and eigenvalue analysis of power system with microgrid,” Electrical Engineering, c. 100, s. 4, ss. 2351-2360, 2018.
  • [17] H. D. Chiang, A. J. Flueck, K. S. Shah ve N. Balu, “CPFLOW: A practical tool for tracing power system steady-state stationary behavior due to load and generation variations,” IEEE Transactions on Power Systems, c. 10, sayı 2, ss. 623-634, 1995.
  • [18] F. Milano, “An open source power system analysis toolbox,” IEEE Transactions on Power Systems, c. 20, s. 3, ss. 1199-1206, 2005.