CdTe Kuantum Noktası Katkısının E63, E7 ve SCLP Sıvı Kristal Malzemelerin Akım-Voltaj Karakteristikleri Üzerine Etkisi

Nanometre boyutlarındaki kuantum noktalarının (KN) özellikle de konuk-konak bazlı hibrit yapılarda kullanımı yapıların elektro-optik özelliklerinde iyileşmeler ortaya koymuş, dolayısıyla da güncel çalışmaların hatırı sayılı bir kısmının odak noktası KN katkısı yoluyla yapıda iyileştirmeler sağlama üzerine olmuştur. Bu çalışmada CdTe KN katkısının E63, E7 ve SCLP gibi sıvı kristal malzemelerin akım-voltaj karakteristikleri üzerindeki etkileri incelenmiştir. Akım tüm numuneler için QD katkısıyla birlikte artmış fakat en iyi gelişme E7 için elde edilmiştir. Bu sebeple E7 ve KN katkılı E7 yapılarının akım-voltaj karakteristikleri ayrıca morötesi ışık altında incelenmiştir. Her iki yapı için de elektron-deşik çiftlerinin üretiminden dolayı artan morötesi ışık şiddetiyle birlikte akımın arttığı tespit edilmiştir. Fotoakımın ışık gücüne bağlılığı KN katkısının yapıdaki rekombinasyon mekanizmasını etkilemediğini ortaya koymuştur. Öte yandan KN katkılı E7’nin morötesi ışık duyarlılığı E7’ye kıyasla yaklaşık iki kat fazla elde edilmiştir. Böylece, CdTe KN katkısının E7’nin karanlıkta ve morötesi ışık altındaki akım-voltaj ve fotoiletkenlik karakteristiklerine hatırı sayılır katkıda bulunduğu sonucuna varılmıştır.

Effects of CdTe Quantum Dot Dispersal on Current-Voltage Characteristics in Liquid Crystalline Mediums of E63, E7 and SCLP

The usage of nano-sized quantum dots (QDs) particularly in guest-host based hybrid mediums revealed enhancements in electro-optical properties of the mediums, therefore the focus of considerable amount of contemporary studies has been about dispersal of QDs for improvements in medium. This study investigates the effects of CdTe QD dispersal on current-voltage characteristics of some liquid crystalline materials such as E63, E7 and SCLP. Current is increased for all samples due to QD dispersal, however the best improvement is obtained for E7. Hence, current-voltage characteristics of E7 and QD dispersed E7 mediums were also investigated under UV light exposure. Current values of both mediums were found to increase with increasing UV light power due to generation of electron-hole pairs. Photocurrent’s dependence on light power revealed that QD dispersal does not affect recombination mechanism in the medium. On the other hand, UV light responsivity of QD dispersed E7 was obtained approximately twice of that of E7. Thus, it was concluded that CdTe QDs make considerable contribution to current-voltage and photoconductivity characteristics of E7 in dark and under UV light illumination.

___

  • [1] K. Gökşen, M. Kurtay, Ö. T. Özmen, M. Şağban, O. Köysal, “PCDTBT: PCBM Tabanlı Organik Schottky Diyotlarının ve Heteroeklem Güneş Hücrelerinin Optoelektronik Karakterizasyonu,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 7, no. 3, pp. 1644-1657, 2019.
  • [2] A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson and J.C. Johnson, “Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells,” Chemical Review, vol. 110, pp. 6873–6890, 2010.
  • [3] D.V. Talapina, S.K. Poznyakb, N.P. Gaponika, A.L. Rogacha and A. Eychmüller, “Synthesis of Surface-Modified Colloidal Semiconductor Nanocrystals and Study of Photoinduced Charge Separation and Transport in Nanocrystal-Polymer Composites,” Physica E, vol. 14, pp. 237–241, 2002.
  • [4] Y.S. Xia and C.Q. Zhu, “Use of Surface-Modified CdTe Quantum Dots as Fluorescent Probes in Sensing Mercury (II),” Talanta, vol. 75, pp. 215–221, 2008.
  • [5] L.M. Maestro, C. Jacinto, U.R. Silva, F. Vetrone, J.A. Capobianco, D. Jaque and J.G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small, vol. 7, no. 13, pp. 1774–1778, 2011.
  • [6] Z. Kang, Y. Zhang, H. Menkara, B.K. Wagner, C.J. Summers, W. Lawrence and V. Nagarkar, “CdTe Quantum Dots and Polymer Nanocomposites for X-Ray Scintillation and Imaging,” Applied Physics Letters, vol. 98, pp. 181914, 2011.
  • [7] I. Suarez, H. Gordillo, R. Abargues, S. Albert and J. Martinez-Pastor, “Photoluminescence Waveguiding in CdSe and CdTe QDs–PMMA Nanocomposite Films,” Nanotechnology, vol. 22, pp. 435202, 2011.
  • [8] A. Kumar and A.M. Biradar, “Effect of Cadmium Telluride Quantum Dots on the Dielectric and Electro-Optical Properties of Ferroelectric Liquid Crystals,” Physical Review E, vol. 83, pp. 041708, 2011.
  • [9] B. Kinkead and T. Hegmann, “Effects of Size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture,” Journal of Materials Chemistry, vol. 20, pp. 448–458, 2010.
  • [10] J. Mirzaei, M. Reznikov and T. Hegmann, “Quantum dots as liquid crystal dopants,” Journal of Materials Chemistry, vol. 22, pp. 22350–22365, 2012.
  • [11] J. Mirzaei, M. Urbanski, K. Yu, H.S. Kitzerow and T. Hegmann, “Nanocomposites of a nematic liquid crystal doped with magic-sized CdSe quantum dots,” Journal of Materials Chemistry, vol. 21, pp. 12710–12716, 2011.
  • [12] E.A. Konshina, E.O. Gavrish, A.O. Orlova and M.V. Artem’ev, “Effect of dispersed CdSe/ZnS Quantum Dots on Optical and Electrical Characteristics of Nematic Liquid Crystal Cells,” Technical Physics Letters, vol. 37, no. 11, pp. 1011–1014, 2011.
  • [13] A. Bobrovsky, K. Mochalov, V. Oleinikov, A. Sukhanova, A. Prudnikau, M. Artemyev, V. Shibaev and I. Nabiev, “Optically and Electrically Controlled Circularly Polarized Emission from Cholesteric Liquid Crystal Materials Doped with Semiconductor Quantum Dots,” Advanced Materials, vol. 24, pp. 6216–6222, 2012.
  • [15] A. Rastogi, K. Agrahari, G. Pathak, A. Srivastava, J. Herman and R. Manohar, “Study of An Interesting Physical Mechanism of Memory Effect in Nematic Liquid Crystal Dispersed with Quantum Dots,” Liquid Crystals, vol. 46, no. 5, pp. 725–735, 2019.
  • [16] K. P. Praseetha, M. C. Divyasree, K. Chandrasekharan and S. Varghese, “Enhanced Optical Nonlinearity in Nematic Liquid Crystal on Doping with CdSe Quantum Dot,” Journal of Molecular Liquids, vol. 273, pp. 497–503, 2019.
  • [17] Y. Wang, Y. Li, P. Zhou, S. Liu, X. Xu, X. Li and Y. Su, “Color Holographic Display Using Quantum‐Dot Doped Liquid Crystal,” SID Symposium Digest of Technical Papers, vol. 50, no. 1, pp. 493–496, 2019.
  • [18] G. Kocakülah, G. Algül and O. Köysal, “ Effect of CdSeS/ZnS Quantum Dot Concentration on the Electro-Optical and Dielectric Properties of Polymer Stabilized Liquid Crystal,” Journal of Molecular Liquids, vol. 299, pp. 112182, 2020.
  • [19] N.A. Vaz and G.W. Smith, “Polymer Dispersed Liquid Crystal Films Formed by Electron Beam Curing,” U.S. Patent 4971719. Nov., 20, 1990.
  • [20] B. Gündüz, I.S. Yahia and F. Yakuphanoğlu, “Electrical and Photoconductivity Properties of p-Si/P3HT/Al and p-Si/P3HT:MEH-PPV/Al Organic Devices: Comparison Study,” Microelectronic Engineering, vol. 98, pp. 41–57, 2012.
  • [21] S. K. Ram, S. Kumar and P. Roca i Cabarrocas, “Study of Anomalous Behavior of Steady State Photoconductivity in Highly Crystallized Undoped Microcrystalline Si Films,” Journal of Non-crystalline Solids, vol. 352, pp. 1172–1175, 2006.
  • [14] S. Doke, A. Shinde, V. Raghavendra Reddy, P. Ganguly and S. Mahamuni, “Enhancement in Electro-Optical Properties of Ferroelectric Liquid Crystal By Doping Perovskite CsPbBr3 Quantum Dots,” Liquid Crystals, pp. 1–8, 2020.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü