Amin Fonksiyonlu Karbon Nanotüp, Kalay Oksit Nanopartikül ve Diamin Oksidaz Temelli Triptamin Biyosensörü

Bu çalışmada amino fonksiyonlu çok duvarlı karbon nanotüp (NH2-MWCNT) ve kalay oksit nanopartikül (SnO2) ile modifiye edilmiş perde baskılı karbon elektrotlara (SPCE) dayanan amperometrik triptamin biyosensörü geliştirildi. Diamin oksidaz (DAO) enzimi NH2-MWCNT-SnO2/SPCE yüzeyine N-etil-N′-(3-dimetilaminopropil) karbodiimit (EDC) ve N-hidroksi süksinimit (NHS) kullanılarak kovalent bağlama yöntemi ile immobilize edildi. Hazırlanan elektrot yüzeyi, enzimlerin yüzeyden uzaklaşmasını engellemek ve girişim etkilerini azaltmak amacıyla son olarak Nafyon ile kaplandı. Biyosensörün yüzey morfolojisi, elektrokimyasal özellikleri ve analitik performansı taramalı elektron mikroskobu (SEM), dönüşümlü voltammetri (CV), elektrokimyasal empedans spektroskopi (EIS) ve kronoamperometri yöntemleri kullanılarak incelendi. Geliştirilen biyosensör ile triptamin için elde edilen doğrusal çalışma aralığı, gözlenebilme sınırı ve duyarlık sırası ile 2,0×10-6 ‒ 2,5×10-3 M, 6,0×10-7 M ve 6,52 µA mM-1 olarak bulundu. Hazırlanan biyosensörün tekrar kullanılabilirlik ve tekrar üretilebilirliğinin oldukça iyi olduğu belirlendi.

Tryptamine Biosensor Based on Amino-Functionalized Multiwalled Carbon Nanotubes, Tin Oxide Nanoparticles and Diamine Oxidase

In this study, amperometric tryptamine biosensor based on amino functionalized multiwalled carbon nanotubes (NH2-MWCNT) and tin oxide nanoparticles (SnO2) modified screen-printed carbon electrode (SPCE) was developed. Diamine oxidase (DAO) enzyme was covalently immobilized onto NH2-MWCNT-SnO2/SPCE surface via (1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide) (EDC) ve N-hydroxysuccinimide (NHS) chemistry. The resulting electrode surface was finally covered with Nafion in order to prevent enzyme leakage from the surface and minimize the effect of interferences. The surface morphology, electrochemical bahaviour and analytical performance of the biosensor was investigated by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry methods. Linear working range, limit of detection and sensitivity of the developed biosensor was found to be 2.0×10-6 ‒ 2.5×10-3 M, 6.0×10-7 M ve 6.52 µA mM-1, respectively. Biosensor also showed high repeatability and reproducibility.

___

  • 1] X. Xing, S. Liu, J. Yu, W. Lian ve J. Huang, “Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine,” Biosensors and Bioelectronics, c. 31, s. 1, ss. 277–283, 2012.
  • [2] T. Ramon-Marquez, A. L. Medina-Castillo, A. Fernandez-Gutierrez ve J. F. Fernandez-Sanchez, “Novel optical sensing film based on a functional nonwoven nanofibre mat for an easy, fast and highly selective and sensitive detection of tryptamine in beer,” Biosensors and Bioelectronics, c. 79, ss. 600–607, 2016.
  • [3] B. Bóka, N. Adányi, D. Virág, M. Sebela ve A. Kiss, “Spoilage Detection with Biogenic Amine Biosensors, Comparisonof Different Enzyme Electrodes,” Electroanalysis, c. 24, s. 1, ss. 181–186, 2012.
  • [4] J. H. Mah, H. K. Han, Y. J. OH, M. G. Kim ve H. J. Hwang, “Biogenic amines in Jeotkals, Korean salted and fermented fish products,” Food Chemistry, c. 79, s. 2, ss. 239–243, 2002.
  • [5] L. Beneduce, A. Romano, V. Capozzi, P. Lucas, L. Barnavon, B. Bach, P. Vuchot, F. Grieco ve G. Spano, “Biogenic amine in wines,” Annals of Microbiology, c. 60, s. 4, ss. 573–578, 2010.
  • [6] H. Tatsumi ve T. Ueda, “Ion transfer voltammetry of tryptamine, serotonin, and tryptophan at the nitrobenzene/water interface,” Journal of Electroanalytical Chemistry, c. 655, s. 2, ss. 180–183, 2011.
  • [7] X. Meng, W. Guo, X. Qin, Y. Liu, X. Zhu, M. Pei ve L. Wang, “A molecularly imprinted electrochemical sensor based on gold nanoparticles and multiwalled carbon nanotube–chitosan for the detection of tryptamine,” RSC Advances, c. 4, s. 73, ss. 38649–38654, 2014.
  • [8] N. Innocente, M. Biasutti, M., Padovese ve S. Moret, “Determination of biogenic amines in cheese using HPLC technique and direct derivatization of acid extract,” Food Chemistry, c. 101, s. 3, ss. 1285–1289, 2007.
  • [9] G. Sagratini, M. Fernández-Franzón, F. De Berardinis, G. Font, S. Vittori ve J. Mañes, “Simultaneous determination of eight underivatised biogenic amines in fish by solid phase extraction and liquid chromatography–tandem mass spectrometry,” Food Chemistry, c. 132, s. 1, ss. 537–543, 2012.
  • [10] G. Favaro, P. Pastore, G. Saccani ve S. Cavalli, “Determination of biogenic amines in fresh and processed meat by ion chromatography and integrated pulsed amperometric detection on Au electrode,” Food Chemistry, c. 105, s. 4, ss. 1652–1658, 2007.
  • [11] F. Kvasnička ve M. Voldřich, “Determination of biogenic amines by capillary zone electrophoresis with conductometric detection,” Journal of Chromatography A, c. 1103, s. 1, ss. 145–149, 2006.
  • [12] D. J. E. Costa, A. M. Martínez, W. F. Ribeiro, K. M. Bichinho, M. S. D. Nezio, M. F. Pistonesi, M. C. U. Araujo, “Determination of tryptamine in foods using square wave adsorptive stripping voltammetry,” Talanta, c. 154, ss. 134–140, 2016.
  • [13] D. Compagnone, G. Isoldi, D. Moscone, G. Palleschi, “Amperometric detection of biogenic amines in cheese using ımmobilised diamine oxidase,” Analytical Letters, c. 34, s. 6, ss. 841–854, 2001.
  • [14] X. Xing, S. Liu, J. Yu, W. Lian, J. Huang, “Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine,” Biosensors and Bioelectronics, c. 31, ss. 277–283, 2012.
  • [15] X. Meng, W. Guo, X. Qin, Y. Liu, X. Zhu, M. Pei, L. Wang, “A molecularly imprinted electrochemical sensor based on gold nanoparticles and multiwalled carbon nanotube–chitosan for the detection of tryptamine,” RSC Advances, c. 4, ss. 38649–38654, 2014.
  • [16] M. Holzinger, A. Le Goff ve S. Cosnier, “Nanomaterials for biosensing applications: a review,” Frontiers in Chemistry, c. 2, s. 63, ss. 1–10, 2014.
  • [17] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, c. 354, ss. 56–58, 1991.
  • [18] A. T. Lawal, “Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors,” Materials Research Bulletin, c. 73, ss. 308–350, 2016.
  • [19] A. P. Periasamy, Y. J. Chang ve S. M. Chen, “Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode,” Bioelectrochemistry, c. 80, s. 2, ss. 114–120, 2011.
  • [20] Y. C. Tsai ve C. C. Chiu, “Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds,” Sensors and Actuators B: Chemical, c. 125, s. 1, ss. 10–16, 2007.
  • [21] C. Kaçar, P. E. Erden ve E. Kılıç, “Amperometric L-lysine enzyme electrodes based on carbon nanotube/redox polymer and graphene/carbon nanotube/redox polymer composites,” Analytical and Bioanalytical Chemistry, c. 409, s. 11, ss. 2873–2883, 2017.
  • [22] S. K. Mahadeva ve J. Kim, “Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite,” Sensors and Actuators B: Chemical, c. 157, s. 1, ss. 177–182, 2011.
  • [23] N. Jia, Q. Zhou, L. Liu, M. Yan ve Z. Jiang, “Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel-derived tin oxide/gelatin composite films,” Journal of Electroanalytical Chemistry, c. 580, s. 2, ss. 213–221, 2005.
  • [24] A. A. Ansari, A. Kaushik, P. R. Solanki ve B. E. Malhotra, “Electrochemical cholesterol sensor based on tin oxide‐chitosan nanobiocomposite film,” Electroanalysis, c. 21, s. 8, ss. 965–972, 2009.
  • [25] C. Kaçar, P. E. Erden ve E. Kılıç, “Amperometric L-lysine biosensor based on carboxylated multiwalled carbon nanotubes-SnO2 nanoparticles-graphene composite,” Applied Surface Science, c. 419, ss. 916–923, 2017.
  • [26] Q. Zhou, L. Yang, G. Wang ve Y. Yang, “Acetylcholinesterase biosensor based on SnO2 nanoparticles–carboxylic graphene–nafion modified electrode for detection of pesticides,” Biosensors and Bioelectronics, c. 49, ss. 25–31, 2013.
  • [27] Z. Wen, Q, Wang, Q. Zhang ve J. Li, “In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous‐tube structure as anode for lithium batteries,” Advanced Functional Materials, c. 17, s. 15, ss. 2772–2778, 2007.
  • [28] S. Aftaba, G. Özçelikay, S. Kurbanoğlu, A. Shah, F. J. Iftikhar ve S.A. Özkan, “A novel electrochemical nanosensor based on NH2-functionalized multi walled carbon nanotubes for the determination ofcatechol-orto-methyltransferase inhibitor entacapone,” Journal of Pharmaceutical and Biomedical Analysis, c. 165, ss. 73–81, 2019.
  • [29] X. Wanga, Y. Zhanga, C. E. Banksb, Q. Chenc ve X. Ji, “Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes,” Colloids and Surfaces B: Biointerfaces, c. 78, ss. 363–366, 2010.
  • [30] Ö. Türkarslan, S. Kıralp Kayahan, L. Toppare, “A new amperometric cholesterol biosensor based on poly(3,4-ethylenedioxypyrrole),” Sensors and Actuators B: Chemical, c. 136, s. 2, ss. 484–488, 2009.
  • [31] R. Draisci, G. Volpe, L. Lucentini, A. Cecilia, R. Federico ve G. Palleschi, “Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies,” Food Chemistry, c. 62, s. 2, ss. 225–232, 1998.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü