(3-(4-klorofenil)-4,5-dihidroizoksazol-4,5-diil)dimetanol Bileşiği: Antibakteriyel Aktivite, Antifungal Aktivite ve Hesaplanmış Yapısal Parametreler

Bu çalışma ile, 4,5-dihidroizoksazol dimetanol bileşiğinin (1a) çeşitli bakteri ve mantara karşı antibakteriyel ve antifungal aktivite sonuçlarını ölçmeyi ve ayrıca (1a) bileşiğinin bazı yapısal parametrelerini (teorik tanımlayıcıları) hesaplamayı amaçladık. Mikrodilüsyon kuyucukları kullanılarak minimal inhibisyon konsantrasyonları (MİK) testi için mikrodilüsyon broth prosedürleri çalışılmıştır. Bileşik (1a), tüm bakteri ve mantara karşı etkili aktiviteler sergilemiştir. Bileşik (1a), özellikle P. aeruginosa'ya karşı iyi bir sonuç (MİK = 50 µg/ml) vermiştir. Bileşik (1a) 'nın yapısı çizilmiştir ve geometrik optimizasyonu Ab initio (RHF/3-21G) seviyesi kullanılarak yapılmıştır.

(3-(4-chlorophenyl)-4,5-dihydroisoxazole-4,5-diyl)dimethanol Compound: Antibacterial Activity, Antifungal Activity and Calculated Structural Parameters

We intended to quantify the antibacterial and antifungal activity results of 4,5-dihydroisoxazole dimethanol compound (1a) against several bacteria and fungi and also calculate some structural parameters (theoretical descriptors) of compound (1a) with this work. Microdilution broth procedures were studied using microdilution wells for the minimal inhibitory concentrations (MICs) test. Compound (1a) exhibited fair activities against all the bacteria and fungi. Compound (1a) has been a good result (MIC = 50 µg/ml) against particularly P. aeruginosa. The structure of compound (1a) was drawn, and geometrical optimization was done using the Ab initio (RHF/3-21G) level.

___

  • [1] M. Serpi, Z. Özdemir, Y. Salman, “Investigation of the antibacterial effects of some plant extracts on Propionibacterium acnes,” KSU Journal of Agriculture and Nature, vol. 15, no. 1, pp. 7-12, 2012.
  • [2] E. S. Bireller, A. B. Dinç, E. Şahin, A. Ergen, B. Çakmakoğlu, “Inverstigation of rational use of antibiotics on parents,” Experimed, vol. 6, no. 12, pp. 33-44, 2016.
  • [3] D. L. Kiska, P. H. Gilligan, Pseudomonas. Manual of Clinical Microbiology, 7th ed., Washington, DC, USA: ASM Press., 1999, pp. 517-525.
  • [4] A. U. Akbal, A. Y. Çoban, B. Durupınar, “New antibacterials,” Türk Mikrobiyoloji Cemiyeti Dergisi, vol. 48, no. 2, pp. 87-99, 2018.
  • [5] K. Lewis, “New approaches to antimicrobial discovery,” Biochemical Pharmacology, vol. 134, pp. 87-98, 2017.
  • [6] H. Krauss, A. Weber, M. Appel, Zoonoses. Infectious Diseases Transmissible from Animals to Humans, 3rd ed., vol. 194, Washington DC, USA: ASM Press, 2003, p. 456.
  • [7] A. Waness, “Revisiting methicillin-resistant Staphylococcus aureus infections,” Journal of Global Infectious Diseases, vol. 2, no. 1, pp. 49-56, 2010.
  • [8] A. E. Villaruz, J. B. Wardenburg, B. A. Khan, A. R. Whitney, D. E. Sturdevant, D. J. Gardner, F. R. DeLeo, M. Otto, “A point mutation in the agr locus rather than expression of the panton-valentine Leukocidin caused previously reported phenotypes in Staphylococcus aureus pneumonia and gene regulation,” The Journal of Infectious Diseases, vol. 200, no. 5, pp. 724-734, 2009.
  • [9] M. C. Enright, D. A. Robinson, G. Randle, E. J. Feil, H. Grundmann, B. G. Spratt, “The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA),” Proceedings of the National Academy of Sciences, vol. 99, no. 11, pp. 7687-7692, 2002.
  • [10] G. Cornaglia, G. M. Rossolini, “Forthcoming therapeutic perspectives for infections due to multidrug-resistant Gram-positive pathogens,” Clinical Microbiology and Infection, vol. 15, pp. 218-223, 2009.
  • [11] U. Kayiş, “Antimicrobial Resistance Mechanisms,” ASD., vol. 5, no. 1, pp. 1-12, 2019.
  • [12] A. Martinez, S. J. Kolvek, C. L. T. Yip, J. Hopke, K. A. Brown, I. A. Macneil, M. S. Osburne, “Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts,” Applied and Environmental Microbiology, vol. 70, no. 4, pp. 2452-2463, 2004.
  • [13] A. Jabbour, M. Srebnik, B. Zaks, V. Dembitsky, D. Steinberg, “Evaluation of oxazaborolidine activity on Streptococcus mutans biofilm formation,” International Journal of Antimicrobial Agents, vol. 26, pp. 491-496, 2005.
  • [14] E. J. C. Goldstein, D. M. Citron, K. L. Tyrrell, C. V. Merriam, “Comparative In Vitro Activities of GSK2251052, a Novel Boron-Containing Leucyl-tRNA Synthetase Inhibitor, against 916 Anaerobic Organisms,” Antimicrobial Agents and Chemotherapy, vol. 57, no. 5, pp. 2401-2404, 2013.
  • [15] D. Song, F. Bi, N. Zhang, Y. Qin, X. Liu, Y. Teng, S. Ma, “Design, synthesis of novel 4,5-dihydroisoxazole-containing benzamide derivatives as highly potent FtsZ inhibitors capable of killing a variety of MDR Staphylococcus aureus,” Bioorganic & Medicinal Chemistry, vol. 28, no. 115729, pp. 1-16, 2020.
  • [16] A. D. B. Gabriela, A. P. Aguiar, C. E. Martins, R. N. J. Maria, “Synthesis of 3-furanyl-4,5-dihydroisoxazole derivatives via cycloaddition and their antibacterial evaluation,” Letters in Drug Design Discovery, vol. 16, no. 3, pp. 364-369, 2019.
  • [17] J. Sowdari, S. Thata, Y. Gudi, P. Venkatapuram, P. Adiviredd, “Synthesis of amide-linked benzazolyl isoxazoles adoptinggreen methods and evaluation as antimicrobials,” Journal of Heterocyclic Chemistry, vol. 57, pp. 1882-1892, 2020.
  • [18] M. Pir, H. Agirbas, F. Budak, O. Sahin, “Synthesis, characterization, antimicrobial activity and QSAR studies of some new 6-substituted phenyl 3-(4-chlorophenyl)-3a,4,8,8a-tetrahydro-[1,3,2]dioxaborepino[5,6-d]isoxazoles,” Heteroatom Chemistry, vol. 28, no. 2, e21363, 2017.
  • [19] N. S. Hosmane, Boron science. New technologies and applications, 1st ed., US: CRC Press, 2012, pp. 45-50.
  • [20] B. T. Cho, “Recent advances in the synthetic applications of the oxazaborolidine-mediated asymmetric reduction,” Tetrahedron, vol. 62, no. 33, pp. 7621-7643, 2006.
  • [21] Y. K. Zhang, J. J. Plattner, T. Akama, S. J. Baker, V. S. Hernandez, V. Sanders, Y. Freund, R. Kimura, W. Bu, K. M. Hold, X. S. Lu, “Design and synthesis of boron-containing PDE4 inhibitors using soft-drug strategy for potential dermatologic anti-inflammatory application,” Bioorganic & Medicinal Chemistry Letters, vol. 20, no. 7, pp. 2270-2274, 2010.
  • [22] R. L. Papke, G. Zheng, N. A. Horenstein, L. P. Dwoskin, P. A. Crooks, “The characterization of a novel rigid nicotine analog with α7-selective nAChR agonist activity and modulation of agonist properties by boron inclusion,” Bioorganic & Medicinal Chemistry Letters, vol. 15, no. 17, pp. 3874-3880, 2005.
  • [23] K. Barral, S. Priet, C. D. Michelis, J. Sire, J. Neyts, J. Balzarini, B. Canard, K. Alvarez, “Synthesis and antiviral activity of boranophosphonate isosteres of AZT and d4T monophosphates,” Europen Journal of Medicinal Chemistry, vol. 45, no. 2, pp. 849-856, 2010.
  • [24] R. Trivedi, E. R. Reddy, C. K. Kumar, B. Sridhar, K. P. Kumar, M S. Rao, “Efficient synthesis, structural characterization and antimicrobial activity of chiral aryl boronate esters of 1,2-O-isopropylidene-α-D-xylofuranose,” Bioorganic & Medicinal Chemistry Letters, vol. 21, pp. 3890-3893, 2011.
  • [25] Y. K. Zhang, J. J. Plattner, Y. R. Freund, E. E. Easom, Y. Zhou, J. Gut, P. J. Rosenthal, D. Waterson, F. J. Gamo, I. A. Barturen, M. Ge, Z. Li, L. Li, Y. Jian, H. Cui, H. Wang, J. Yang, “Synthesis and structure-activity relationships of novel benzoxaboroles as a new class of antimalarial agents,” Bioorganic & Medicinal Chemistry Letters, vol. 21, pp. 644-651, 2011.
  • [26] S. Song, P. Gaoa, L. Sun, D. Kang, J. Kongsted, V. Poongavanam, P. Zhan, X. Liu, “Recent developments in the medicinal chemistry of single boron atom-containing compounds,” Acta Pharmaceutica Sinica B, 2021;10.1016/j.apsb.2021.01.010.
  • [27] I. R. V. Valdez, M. N. Rosalez, J. M. Q. Santiago, D. F. G. Eunice, A. S. U. Marvin, “Docking simulations exhibit Bortezomib and other boron-containing peptidomimetics as potential inhibitors of SARS-CoV-2 Main Protease,” Current Chemical Biology, vol. 14, pp. 279-288, 2020.
  • [28] Y. S. Kara, “Nitril oksit ve amidoksim kullanılarak yeni hetero halkalı bileşiklerin sentezi,” Doktora tezi, Kimya Bölümü, Kocaeli Üniversitesi, Kocaeli, Türkiye, 2009.
  • [29] CLSI. Methods for diluation antimicrobial susceptibility tests for bacteria that grow aerobically: Approved Standard, M-7, A-7, Wayne: PA, USA, Clinical Laboratory Standards Institute, 2006.
  • [30] CLSI. Performance standards for antimicrobial susceptibility testing. Fifteenth Informational Supplement, CLSI-M110-S15, CLSI, Wayne: PA, USA, Clinical Laboratory Standards Institute, 2005.
  • [31] CLSI. Reference method for broth dilution antifungal susceptibility testing of yeast: Approved Standard, M27 A2, 2nd ed. CLSI, Wayne: PA, USA, Clinical Laboratory Standards Institute, 2002.
  • [32] HyperChem for Windows, Computer Program, 7.2 version, Georgia, (USA): Hypercube, Inc., Gainesville, FL, 2002.
  • [33] H. M. Patel, M. N. Noolvi, P. Sharma, V. Jaiswal, S. Bansal, S. Lohan, S. S. Kumar, V. Abbot, S. Dhiman, V. Bhardwaj, “Quantitative structure-activity relationship (QSAR) studies as strategic approach in drug discovery,” Medicinal Chemistry Research, vol. 23, pp. 4991-5007, 2014.
  • [34] C. Huang, M. J. Embrechts, N. Sukumar, C. M. Breneman, “Data fusion and auto-fusion for quantitative structure-activity relationship (QSAR). Artificial neural networks-ICANN,” 17th International Conference, 2007, pp. 9-13.
  • [35] S. Özden, R. Ertan, E. Akı-Şener, İ. Yalçın, D. Nebioğlu, E. Büyükbingöl, H. Göker, İ. Yıldız, T. G. Altuntaş-Dinlenç, M. Tunçbilek, G. Ayhan-Kılçıgil, S. Ölgen, S. Süzen, Ö. Temiz-Arpacı, C. Kuş, O. Bozdağ-Dündar, B. Tekiner-Gülbaş, Z. Ateş-Alagöz, Farmasötik Kimya Pratikleri 1-2, 1. baskı, Ankara, Türkiye: Ankara Üniversitesi Basımevi, 2004, böl. 4, ss. 63-95.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü