Epigenetik Mekanizmalar ve Kanser

İlk defa 1940’ların başında Condrad Hal Waddington tarafından ortaya atılan epigenetikkavramı, DNA dizilimini değiştirmeden gen ifadesini etkileyen kalıtılabilir değişiklikler olaraktanımlanabilir. Yapılan araştırmalarla epigenetik mekanizmaların birçok biyolojik olayda vekanser gibi hastalıklarda önemli görevler ifa ettiği bulunmuştur. Bu derlemede literatürdekiepigenetik mekanizmalar ve bunların kanserle olan ilişkileri hakkında bilgiler özetlenmiştir

Epigenetic Mechanisms and Cancer

Epigenetics, proposed by Condrad Hal Waddington at the begining of the 1940 describesheritable changes that affect gene expression without changing DNA sequencing. Afterresearches, it has been found that the epigenetics modifications perform important task in manybiological processes and diseases like cancer. In this review we summarize the information inliterature related with epigenetic mechanisms and their relationship with cancer

___

  • Jackson SP, Bartek J. The DNA-damage response in human biology and disease, Nature 2009; 461(7267):1071-8.
  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics, CA Cancer J Clin 2011; 61(2):69-90.
  • Podlaha O, Riester M, De S, Michor F. Evolution of the cancer genome, Trends Genet 2012; 28(4):155-63.
  • You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 2012; 22(1):9-20.
  • Chervona Y, Costa M. Histone modifications and cancer: biomarkers of prognosis, Am J Cancer Res. 2012; 2(5):589- 97.
  • Pogribny IP, Rusyn I. Environmental toxicants, epigenetics, and cancer, Adv Exp Med Biol. 2013; 754:215-32.
  • Holwerda S, de Laat W. Chromatin loops, gene positioning, and gene expression, Front Genet. 2012; 3:217.
  • Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy, Cell 2012; 150(1):12-27.
  • Sharma S, Kelly TK, Jones PA. Epigenetics in cancer, Carcinogenesis 2010; 31(1):27-36.
  • Rando OJ. Combinatorial complexity in chromatin structure and function: revisiting the histone code, Curr Opin Genet Dev 2012; 22(2):148-55.
  • Waddington,C.H. The epigenotype. 1942, Int J Epidemiol 2012; 41(1):10-3.
  • Hassler MR, Egger G. Epigenomics of cancer - emerging new concepts. Biochimie 2012 (Epub ahead of print).
  • Gerhauser C. Cancer Chemoprevention and Nutri-Epigenetics: State of the Art and Future Challenges, Top Curr Chem 2012 [Epub ahead of print]
  • Martín-Subero JI. How epigenomics brings phenotype into being, Pediatr Endocrinol Rev 2011; 9 Suppl 1:506-10.
  • Sandoval J, Esteller M. Cancer epigenomics: beyond genomics, Curr Opin Genet Dev 2012; 22(1):50-5.
  • Lansdorp PM, Falconer E, Tao J, Brind'amour J, Naumann U. Epigenetic differences between sister chromatids? Ann N Y Acad Sci 2012; 1266(1):1-6.
  • Carone DM, Lawrence JB. Heterochromatin instability in cancer: From the Barr body to satellites and the nuclear periphery, Semin Cancer Biol 2012 [Epub ahead of print]
  • Hatziapostolou M, Iliopoulos D. Epigenetic aberrations during oncogenesis, Cell Mol Life Sci 2011; 68(10):1681-702.
  • Chin SP, Dickinson JL, Holloway AF. Clin Epigenetics. Epigenetic regulation of prostate cancer, 2011; 2(2):151-69.
  • Catalano MG, Fortunati N, Boccuzzi G. Epigenetics modifications and therapeutic prospects in human thyroid cancer, Front Endocrinol (Lausanne) 2012; 3:40.
  • Gigek CO, Chen ES, Calcagno DQ, Wisnieski F, Burbano RR, Smith MA. Epigenetic mechanisms in gastric cancer, Epigenomics 2012; 4(3):279-94.
  • Dubuc AM, Mack S, Unterberger A, Northcott PA, Taylor MD. The epigenetics of brain tumors, Methods Mol Biol 2012; 863:139-53.
  • Liloglou T, Bediaga NG, Brown BR, Field JK, Davies MP. Epigenetic biomarkers in lung cancer, Cancer Lett 2012 [Epub ahead of print]
  • Kim WJ, Kim YJ. Epigenetics of bladder cancer, Methods Mol Biol 2012; 863:111-8.
  • Khare S, Verma M. Epigenetics of colon cancer, Methods Mol Biol 2012; 863:177-85.
  • Seeber LM, Van Diest PJ. Epigenetics in ovarian cancer, Methods Mol Biol 2012; 863:253-69.
  • Rawson JB, Bapat B. Epigenetic biomarkers in colorectal cancer diagnostics, Expert Rev Mol Diagn 2012; 12(5):499- 509.
  • Mascolo M, Siano M, Ilardi G, Russo D, Merolla F, De Rosa G, Staibano S. Epigenetic disregulation in oral cancer, Int J Mol Sci 2012; 13(2):2331-53.
  • Greenberg ES, Chong KK, Huynh KT, Tanaka R, Hoon DS. Epigenetic biomarkers in skin cancer, Cancer Lett. 2012 [Epub ahead of print]
  • Stecklein SR, Jensen RA, Pal A. Genetic and epigenetic signatures of breast cancer subtypes, Front Biosci (Elite Ed). 2012; 4:934-49.
  • Vincent A, Van Seuningen I. On the epigenetic origin of cancer stem cells, Biochim Biophys Acta 2012; 1826(1):83-8.
  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Human DNA methylomes at base resolution show widespread epigenomic differences, Nature 2009; 462(7271):315-22.
  • Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape, Cell 2007; 128(4):635-8.
  • Umer M, Herceg Z. Deciphering the Epigenetic Code: An Overview of DNA methylation Analysis Methods, Antioxid Redox Signal 2012 [Epub ahead of print]
  • Zuo T, Tycko B, Liu TM, Lin JJ, Huang TH. Methods in DNA methylation profiling, Epigenomics 2009; 1(2):331-45.
  • Goel A. DNA methylation-based fecal biomarkers for the noninvasive screening of GI cancers, Future Oncol 2010; 6(3):333-6.
  • Antequera F, Bird A. Number of CpG islands and genes in human and Mouse, Proc Natl Acad Sci USA 1993; 90(24):11995-9.
  • Portela A, Esteller M. Epigenetic modifications and human disease, Nat Biotechnol 2010; 28(10):1057-68.
  • Nguyen C, Liang G, Nguyen TT, Tsao-Wei D, Groshen S, Lübbert M, Zhou JH, Benedict WF, Jones PA. Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells, J Natl Cancer Inst 2001; 93(19):1465-72.
  • Ndlovu MN, Denis H, Fuks F. Exposing the DNA methylome iceberg, Trends Biochem Sci 2011; 36(7):381-7.
  • Kulis M, Esteller M. DNA methylation and cancer, Adv Genet 2010; 70:27-56.
  • Smallwood SA, Kelsey G. De novo DNA methylation: a germ cell perspective, Trends Genet 2012; 28(1):33-42.
  • Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes, Hum Mol Genet 2011; 20(4):670-80.
  • Li Y, Zhu J, Tian G, Li N, Li Q, Ye M, Zheng H, Yu J, Wu H, Sun J, Zhang H, Chen Q, Luo R, Chen M, He Y, Jin X, Zhang Q, Yu C, Zhou G, Sun J, Huang Y, Zheng H, Cao H, Zhou X, Guo S, Hu X, Li X, Kristiansen K, Bolund L, Xu J, Wang W, Yang H, Wang J, Li R, Beck S, Wang J, Zhang X. The DNA methylome of human peripheral blood mononuclear cells, PLoS Biol 2010; 9:8(11).
  • Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation, Neuron 2007; 53(6):857-69.
  • Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators, Trends Biochem Sci 2006; 31(2):89-97.
  • Robertson KD. DNA methylation and chromatin - unraveling the tangled web, Oncogene 2002; 21(35):5361-79.
  • Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components, Curr Med Chem 2010; 17(20):2141-51.
  • Holz-Schietinger C, Reich NO. The inherent processivity of the human de novo methyltransferase 3A (DNMT3A) is enhanced by DNMT3L, J Biol Chem 2010; 285(38):29091- 100.
  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development, Cell 1999; 99(3):247-57.
  • Jurkowska RZ, Rajavelu A, Anspach N, Urbanke C, Jankevicius G, Ragozin S, Nellen W, Jeltsch A. Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules: heterochromatic localization and role of Dnmt3L, J Biol Chem 2011; 286(27):24200-7.
  • Yang XX, He XQ, Li FX, Wu YS, Gao Y, Li M. Risk- association of DNA methyltransferases polymorphisms with gastric cancer in the southern chinese population, Int J Mol Sci 2012; 13(7):8364-78.
  • Sun MY, Yang XX, Xu WW, Yao GY, Pan HZ, Li M. Association of DNMT1 and DNMT3B polymorphisms with breast cancer risk in Han Chinese women from South China, Genet Mol Res 2012; [Epub ahead of print].
  • Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts, Nature 1983; 301(5895):89-92.
  • Ehrlich M. DNA hypomethylation in cancer cells, Epigenomics 2009; 1(2):239-59.
  • Fraga MF, Herranz M, Espada J, Ballestar E, Paz MF, Ropero S, Erkek E, Bozdogan O, Peinado H, Niveleau A, Mao JH, Balmain A, Cano A, Esteller M. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors, Cancer Res 2004; 64(16):5527-34.
  • Costa FF, Paixão VA, Cavalher FP, Ribeiro KB, Cunha IW, Rinck JA Jr, O'Hare M, Mackay A, Soares FA, Brentani RR, Camargo AA. SATR-1 hypomethylation is a common and early event in breast cancer, Cancer Genet Cytogenet 2006; 165(2):135-43.
  • Gupta A, Godwin AK, Vanderveer L, Lu A, Liu J. Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma, Cancer Res 2003; 63(3):664-73.
  • Badal V, Chuang LS, Tan EH, Badal S, Villa LL, Wheeler CM, Li BF, Bernard HU. CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression, J Virol 2003; 77(11):6227-34.
  • Kim KH, Choi JS, Kim IJ, Ku JL, Park JG. Promoter hypomethylation and reactivation of MAGE-A1 and MAGE- A3 genes in colorectal cancer cell lines and cancer tissues, World J Gastroenterol 2006; 12(35):5651-7.
  • Roman-Gomez J, Jimenez-Velasco A, Agirre X, Cervantes F, Sanchez J, Garate L, Barrios M, Castillejo JA, Navarro G, Colomer D, Prosper F, Heiniger A, Torres A. Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia, Oncogene 2005; 24(48):7213-23.
  • Bedford MT, van Helden PD. Hypomethylation of DNA in pathological conditions of the human prostate, Cancer Res 1987; 47(20):5274-6.
  • Brothman AR, Swanson G, Maxwell TM, Cui J, Murphy KJ, Herrick J, Speights VO, Isaac J, Rohr LR. Global hypomethylation is common in prostate cancer cells: a quantitative predictor for clinical outcome? Cancer Genet Cytogenet 2005; 156(1):31-6.
  • Seifert HH, Schmiemann V, Mueller M, Kazimirek M, Onofre F, Neuhausen A, Florl AR, Ackermann R, Boecking A, Schulz WA, Grote HJ. In situ detection of global DNA hypomethylation in exfoliative urine cytology of patients with suspected bladder cancer, Exp Mol Pathol 2007; 82(3):292-7.
  • Jones PA, Baylin SB. The epigenomics of cancer, Cell 2007; 128(4):683-92.
  • Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications, Nat Rev Cancer 2011; 11(10):726-34.
  • Girault I, Tozlu S, Lidereau R, Bièche I. Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas, Clin Cancer Res 2003; 9(12):4415-22.
  • Ben Gacem R, Hachana M, Ziadi S, Ben Abdelkarim S, Hidar S, Trimeche M. Clinicopathologic significance of DNA methyltransferase 1, 3a, and 3b overexpression in Tunisian breast cancers, Hum Pathol 2012; 43(10):1731-8.
  • Chen CL, Yan X, Gao YN, Liao QP. Expression of DNA methyltransferase 1, 3A and 3B mRNA in the epithelial ovarian carcinoma, Zhonghua Fu Chan Ke Za Zhi 2005; 40(11):770-4.
  • Nakagawa T, Kanai Y, Saito Y, Kitamura T, Kakizoe T, Hirohashi S. Increased DNA methyltransferase 1 protein expression in human transitional cell carcinoma of the bladder, J Urol. 2003; 170(6Pt1):2463-6.
  • Gros C, Fahy J, Halby L, Dufau I, Erdmann A, Gregoire JM, Ausseil F, Vispé S, Arimondo PB. DNA methylation inhibitors in cancer: Recent and future approaches, Biochimie 2012
  • Billam M, Sobolewski MD, Davidson NE. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells, Breast Cancer Res Treat 2010; 120(3):581-92.
  • Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S, Plass C, Niemeyer CM, Lübbert M. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells, Leukemia 2009; 23(6):1019- 28.
  • Yan L, Nass SJ, Smith D, Nelson WG, Herman JG, Davidson NE. Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor- alpha (ER) in ER-negative human breast cancer cell lines, Cancer Biol Ther 2003; 2(5):552-6.
  • Arasaradnam RP, Commane DM, Bradburn D, Mathers JC. A review of dietary factors and its influence on DNA methylation in colorectal carcinogenesis, Epigenetics 2008; 3(4):193-8.
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals, Nat Genet. 2003; 33 Suppl:245-54.
  • Cedar H, Bergman Y. Programming of DNA methylation patterns, Annu Rev Biochem 2012; 81:97-117.
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms, Nat Rev Genet 2009; 10(5):295-304.
  • Rando OJ. Combinatorial complexity in chromatin structure and function: revisiting the histone code, Curr Opin Genet Dev 2012; 22(2):148-55.
  • Wolffe AP, Hayes JJ. Chromatin disruption and modification, Nucleic Acids Res 1999; 1:27(3):711-20.
  • Allfrey VG, Faulknwe R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis, Proc Natl Acad Sci USA 19664;51:786-94.
  • Jenuwein T, Allis CD. Translating the histone code, Science 2001;293(5532):1074-80.
  • Strahl BD, Allis CD. The language of covalent histone modifications, Nature 2000; 403(6765):41-5.
  • Verrier L, Vandromme M, Trouche D. Histone demethylases in chromatin cross-talks, Biol Cell 2011; 103(8):381-401.
  • Lee JS, Smith E, Shilatifard A. The language of histone crosstalk, Cell 2010; 142(5):682-5.
  • Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation, Cell 2009; 138(6):1122-36.
  • Suganuma T, Workman JL. Crosstalk among Histone Modifications, Cell. 2008; 135(4):604-7.
  • Ooi L, Wood IC. Chromatin crosstalk in development and disease: lessons from REST, Nat Rev Genet. 2007; 8(7):544- 54.
  • Füllgrabe J, Kavanagh E, Joseph B. Histone onco- modifications, Oncogene 2011; 30(31):3391-403.
  • Grunstein M. Histone acetylation in chromatin structure and transcription, Nature 1997; 389(6649):349-52.
  • Struhl K. Histone acetylation and transcriptional regulatory mechanisms, Genes Dev 1998; 12(5):599-606.
  • Turner BM. Histone acetylation and an epigenetic code, Bioessays 2000; 22(9):836-45.
  • Icardi L, De Bosscher K, Tavernier J. The HAT/HDAC interplay: Multilevel control of STAT signaling, Cytokine Growth Factor Rev 2012 [Epub ahead of print]
  • Masumi A. Histone acetyltransferases as regulators of nonhistone proteins: the role of interferon regulatory factor acetylation on gene transcription, J Biomed Biotechnol 2011; 2011:640610.
  • Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase, Nature 1996; 384(6610):641-3.
  • Fu S, Kurzrock R. Development of curcumin as an epigenetic agent, Cancer 2010; 116(20):4670-6.
  • Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation, Annu Rev Biochem 2007; 76:75-100.
  • Hodawadekar SC, Marmorstein R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design, Oncogene 2007; 26(37):5528-40.
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications, Cell Res 2011; 21(3):381-95.
  • Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy, Nat Rev Genet 2009; 10(1):32-42.
  • Prince HM, Bishton MJ, Harrison SJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 2009; 15(12):3958-69.
  • Hayakawa T, Nakayama J. Physiological roles of class I HDAC complex and histone demethylase, J Biomed Biotechnol. 2011; 2011:129383.
  • Haberland M, Johnson A, Mokalled MH, Montgomery RL, Olson EN. Genetic dissection of histone deacetylase requirement in tumor cells, Proc Natl Acad Sci USA. 2009; 106(19):7751-5.
  • Barneda-Zahonero B, Parra M. Histone deacetylases and cancer Mol Oncol 2012 [Epub ahead of print]
  • Sun WJ, Zhou X, Zheng JH, Lu MD, Nie JY, Yang XJ, Zheng ZQ. Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis, Acta Biochim Biophys Sin (Shanghai). 2012; 44(1):80-91.
  • Krusche CA, Wülfing P, Kersting C, Vloet A, Böcker W, Kiesel L, Beier HM, Alfer J. Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res Treat 2005;90(1):15- 23.
  • Zhang Z, Yamashita H, Toyama T, Sugiura H, Omoto Y, Ando Y, Mita K, Hamaguchi M, Hayashi S, Iwase H. HDAC6 expression is correlated with better survival in breast cancer, Clin Cancer Res 2004; 10(20):6962-8.
  • Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, Kim DY. Expression profile of histone deacetylase 1 in gastric cancer tissues, Jpn J Cancer Res 2001; 92(12):1300-4.
  • Jung KH, Noh JH, Kim JK, Eun JW, Bae HJ, Xie HJ, Chang YG, Kim MG, Park H, Lee JY, Nam SW. HDAC2 overexpression confers oncogenic potential to human lung cancer cells by deregulating expression of apoptosis and cell cycle proteins, J Cell Biochem 2012; 113(6):2167-77.
  • Moreno DA, Scrideli CA, Cortez MA, de Paula Queiroz R, Valera ET, da Silva Silveira V, Yunes JA, Brandalise SR, Tone LG. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia, Br J Haematol 2010; 150(6):665-73.
  • Ouaïssi M, Sielezneff I, Silvestre R, Sastre B, Bernard JP, Lafontaine JS, Payan MJ, Dahan L, Pirrò N, Seitz JF, Mas E, Lombardo D, Ouaissi A. gh histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas, Ann Surg Oncol 2008
  • Huang Y, Nayak S, Jankowitz R, Davidson NE, Oesterreich S. Epigenetics in breast cancer: what's new? Breast Cancer Res 2011; 13(6):225.
  • Arts J, de Schepper S, Van Emelen K. Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics. Curr Med Chem 2003; (22):2343-50.
  • Dokmanovic M, Marks PA. Histone deacetylase inhibitors: discovery and development as anticancer agents, J Cell Biochem 2005; 96(2):293-304.
  • Lee JH, Choy ML, Marks PA. Mechanisms of resistance to histone deacetylase inhibitors, Adv Cancer Res 2012; 116:39- 86.
  • Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, Melisko M, Ismail-Khan R, Rugo H, Moasser M, Minton SE. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer, Br J Cancer 2011; 104(12):1828-35.
  • Sato A, Asano T, Ito K, Asano T. Vorinostat and Bortezomib Synergistically Cause Ubiquitinated Protein Accumulation in Prostate Cancer Cells, J Urol 2012 [Epub ahead of print]
  • Decarlo D, Hadden MK. Oncoepigenomics: Making histone lysine methylation count, Eur J Med Chem 2012; 56:179-94.
  • Vo AT, Millis RM. Epigenetics and breast cancers, Obstet Gynecol Int 2012 (E pub).
  • Wood A, Shilatifard A. Posttranslational modifications of histones by methylation, Adv Protein Chem 2004; 67:201- 22.
  • Campagna-Slater V, Mok MW, Nguyen KT, Feher M, Najmanovich R, Schapira M. Structural chemistry of the histone methyltransferases cofactor binding site, J Chem Inf Model 2011; 28;51(3):612-23.
  • Martin C, Zhang Y. The diverse functions of histone lysine methylation, Nat Rev Mol Cell Biol 2005; 6(11):838-49.
  • Sawan C, Herceg Z. Histone modifications and cancer, Adv Genet 2010; 70:57-85.
  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome, Cell 2007; 129(4):823-37.
  • Bedford MT, Richard S. Arginine methylation an emerging regulator of protein function, Mol Cell 2005; 18(3):263-72.
  • Bedford MT. Arginine methylation at a glance, J Cell Sci 2007; 120(Pt 24):4243-6.
  • Di Lorenzo A, Bedford MT. Histone arginine methylation, FEBS Lett 2011; 585(13):2024-31.
  • Tian X, Fang J. Current perspectives on histone demethylases, Acta Biochim Biophys Sin (Shanghai) 2007; 39(2):81-8.
  • Mosammaparast N, Shi Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases, Annu Rev Biochem 2010; 79:155-79.
  • Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance, Nat Rev Genet. 2012; 13(5):343-57.
  • Varier RA, Timmers HT. Histone lysine methylation and demethylation pathways in cancer, Biochim Biophys Acta 2011; 1815(1):75-89.
  • Albert M, Helin K. Histone methyltransferases in cancer, Semin Cell Dev Biol 2010; 21(2):209-20.
  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002; 298(5595):1039-43.
  • Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100(20):11606-11.
  • Arisan S, Buyuktuncer ED, Palavan-Unsal N, Caşkurlu T, Cakir OO, Ergenekon E. Increased expression of EZH2, a polycomb group protein, in bladder carcinoma, Urol Int
  • Mimori K, Ogawa K, Okamoto M, Sudo T, Inoue H, Mori M. Clinical significance of enhancer of zeste homolog 2 expression in colorectal cancer cases, Eur J Surg Oncol 2005; 31(4):376-80.
  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419(6907):624-9.
  • Watanabe Y, Toyota M, Kondo Y, Suzuki H, Imai T, Ohe- Toyota M, Maruyama R, Nojima M, Sasaki Y, Sekido Y, Hiratsuka H, Shinomura Y, Imai K, Itoh F, Tokino T. PRDM5 identified as a target of epigenetic silencing in colorectal and gastric cancer, Clin Cancer Res 2007; 13(16):4786-94.
  • Visser HP, Gunster MJ, Kluin-Nelemans HC, Manders EM, Raaphorst FM, Meijer CJ, Willemze R, Otte AP. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma, Br J Haematol. 2001; 112(4):950-8.
  • Chase A, Cross NC. Aberrations of EZH2 in cancer, Clin Cancer Res 2011; 17(9):2613-8
  • Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tönnissen ER, van der Heijden A, Scheele TN, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes, Nat Genet 2010; 42(8):665-7.
  • Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU, Xia X, Jesneck J, Bracken AP, Silverman LB, Kutok JL, Kung AL, Armstrong SA. H3K79 methylation profiles define murine and human MLL-AF4 leukemias, Cancer Cell 2008; 14(5):355-68.
  • Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, Su L, Xu G, Zhang Y. hDOT1L links histone methylation to leukemogenesis, Cell 2005; 121(2):167-78.
  • Whitman SP, Hackanson B, Liyanarachchi S, Liu S, Rush LJ, Maharry K, Margeson D, Davuluri R, Wen J, Witte T, Yu L, Liu C, Bloomfield CD, Marcucci G, Plass C, Caligiuri MA. DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication, Blood 2008; 112(5):2013-6.
  • Jaju RJ, Fidler C, Haas OA, Strickson AJ, Watkins F, Clark K, Cross NC, Cheng JF, Aplan PD, Kearney L, Boultwood J, Wainscoat JS. A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia, Blood 2001; 98(4):1264-7.
  • Kim JY, Kee HJ, Choe NW, Kim SM, Eom GH, Baek HJ, Kook H, Kook H, Seo SB. Multiple-myeloma-related WHSC1/MMSET methyltransferase with transcriptional repression activity, Mol Cell Biol 2008; 28(6):2023-34. is a histone
  • Rosati R, La Starza R, Veronese A, Aventin A, Schwienbacher C, Vallespi T, Negrini M, Martelli MF, Mecucci C. NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15), Blood 2002; 99(10):3857-60.
  • Le Romancer M, Treilleux I, Leconte N, Robin-Lespinasse Y, Sentis S, Bouchekioua-Bouzaghou K, Goddard S, Gobert- Gosse S, Corbo L. Regulation of estrogen rapid signaling through arginine methylation by PRMT1, Mol Cell 2008; 31(2):212-21.
  • Pedersen MT, Helin K. Histone demethylases in development and disease, Trends Cell Biol. 2010; 20(11):662-71.
  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1, Cell 2004; 119(7):941-53.
  • Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AH, Günther T, Buettner R, Schüle R. LSD1 demethylates repressive histone marks to promote androgen- receptor-dependent 437(7057):436-9. Nature 2005
  • Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T, Berger SL. p53 is regulated by the lysine demethylase LSD1, Nature 2007; 449(7158):105-8.
  • Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation, Nat Genet 2009; 41(1):125-9.
  • Hayami S, Kelly JD, Cho HS, Yoshimatsu M, Unoki M, Tsunoda T, Field HI, Neal DE, Yamaue H, Ponder BA, Nakamura Y, Hamamoto R. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers, Int J Cancer 2011; 128(3):574- 86.
  • Lim S, Janzer A, Becker A, Zimmer A, Schüle R, Buettner R, Kirfel J. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology, Carcinogenesis 2010; 31(3):512-20.
  • Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, Liang J, Sun L, Yang X, Shi L, Li R, Li Y, Zhang Y, Li Q, Yi X, Shang Y. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer, Cell 2009; 138(4):660- 72.
  • Rotili D, Mai A. Targeting Histone Demethylases: A New Avenue for the Fight against Cancer, Genes Cancer 2011; 2(6):663-79.
  • Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation, Mol Cell 2007; 25(6):801-12.
  • Shi L, Sun L, Li Q, Liang J, Yu W, Yi X, Yang X, Li Y, Han X, Zhang Y, Xuan C, Yao Z, Shang Y. Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis, Proc Natl Acad Sci USA 2011; 108(18):7541-6.
  • Kawazu M, Saso K, Tong KI, McQuire T, Goto K, Son DO, Wakeham A, Miyagishi M, Mak TW, Okada H. Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development, PLoS One 2011; 6(3):e17830.
  • Liu G, Bollig-Fischer A, Kreike B, van de Vijver MJ, Abrams J, Ethier SP, Yang ZQ. Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer, Oncogene 2009; 28(50):4491-500.
  • Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins, Nature 2006; 439(7078):811-6.
  • Agger K, Christensen J, Cloos PA, Helin K. The emerging functions of histone demethylases, Curr Opin Genet Dev
  • Islam AB, Richter WF, Jacobs LA, Lopez-Bigas N, Benevolenskaya EV. Co-regulation of histone-modifying enzymes in cancer, PLoS One 2011; 6(8):e24023.
  • Gauthier N, Caron M, Pedro L, Arcand M, Blouin J, Labonté A, Normand C, Paquet V, Rodenbrock A, Roy M, Rouleau N, Beaudet L, Padrós J, Rodriguez-Suarez R. Development of homogeneous nonradioactive methyltransferase and demethylase assays targeting histone H3 lysine 4, J Biomol Screen 2012; 17(1):49-58.
  • Spannhoff A, Sippl W, Jung M. Cancer treatment of the future: inhibitors of histone methyltransferases, Int J Biochem Cell Biol 2009; 41(1):4-11.
  • Cha B, Jho EH. Protein arginine methyltransferases (PRMTs) as therapeutic targets, Expert Opin Ther Targets. 2012; 16(7):651-64.
  • Hoffmann I, Roatsch M, Schmitt ML, Carlino L, Pippel M, Sippl W, Jung M. The role of histone demethylases in cancer therapy, Mol Oncol. 2012 [Epub ahead of print]
  • Guil S, Esteller M. DNA methylomes, histone codes and miRNAs: tying it all together, Int J Biochem Cell Biol 2009; 41(1):87-95.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell 1993; 75(5):843-54.
  • Ruvkun G. Molecular biology. Glimpses of a tiny RNA World, Science 2001; 294(5543):797-9.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions, Cell 2009; 136(2):215-33.
  • Jansson MD, Lund AH. MicroRNA and cancer, Mol Oncol 2012 [Epub ahead of print]
  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation, Nat Cell Biol 2009; 11(3):228-34.
  • Kusenda B, Mraz M, Mayer J, Pospisilova S. MicroRNA biogenesis, functionality and cancer relevance, Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2006; 150(2):205-15.
  • Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs, Genome Res 2009; 19(1):92-105.
  • Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors, Dev Biol 2007; 302(1):1- 12.
  • O'Day E, Lal A. MicroRNAs and their target gene networks in breast cancer, Breast Cancer Res 2010; 12(2):201.
  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers, Nature 2005; 435(7043):834-8.
  • Meltzer PS. Cancer genomics: small RNAs with big impacts. Nature 2005; 435(7043):745-6.
  • Paone A, Galli R, Fabbri M. MicroRNAs as New Characters in the Plot between Epigenetics and Prostate Cancer, Front Genet 2011; 2:62.
  • Davoren PA, McNeill RE, Lowery AJ, Kerin MJ, Miller N. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer, BMC Mol Biol 2008; 9:76
  • Farazi TA, Horlings HM, Ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P, Brown M, Hafner M, Reyal F, van Kouwenhove M, Kreike B, Sie D, Hovestadt V, Wessels LF, van de Vijver MJ, Tuschl T. MicroRNA sequence and expression analysis in breast tumors by deep sequencing, Cancer Res 2011; 71(13):4443-53.
  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer, Cancer Res 2005; 65(16):7065-70.
  • Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation, Cancer Res 2005; 65(21):9628-32.
  • Goel A, Boland CR. Epigenetics of Colorectal Cancer, Gastroenterology. 2012 [Epub ahead of print]
  • Calin GA, Croce CM. MicroRNA signatures in human cancers, Nat Rev Cancer 2006; 6(11):857-66.
  • Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer, Oncogene 2012; 31(13):1609-22.
  • Wong KY, Yu L, Chim CS. DNA methylation of tumor suppressor miRNA genes: a lesson from the miR-34 family, Epigenomics 2011; 3(1):83-92.
  • Fabbri E, Brognara E, Borgatti M, Lampronti I, Finotti A, Bianchi N, Sforza S, Tedeschi T, Manicardi A, Marchelli R, Corradini R, Gambari R. MiRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs, Epigenomics 2011; 3(6):733-45.
  • Czech MP. MicroRNAs as therapeutic targets, N Engl J Med 2006; 354(11):1194-5.
  • Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy, Nat Rev Cancer 2011; 11(12):849-64.
  • Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with 'antagomirs', Nature 2005; 438(7068):685-9.
  • Kutanzi KR, Yurchenko OV, Beland FA, Checkhun VF, Pogribny IP. MicroRNA-mediated drug resistance in breast cancer, Clin Epigenetics 2011; 2(2):171-185.