Nöroproteksiyon ve nöron koruyucu ajanlar

Beyin, strok ya da beyin sarsıntısı gibi hasarlanmaların geri dönüşümünün hemen hemen olanaksız olduğu bir bölgedir. Bununla birlikte son yayınlarda bazı ajanların nöronal hücre harabiyetine karşı koruyucu etkilerinin olduğu bildirilmiştir. Nöroproteksiyon ya da nöron koruma, nöronal hasarın bir kısmını geri döndüren ya da daha ileri hasarlanmanın oluşmasını önleyen ajanların uygulanması demektir. Bu ajanların çoğu küçük moleküller olup kan-beyin bariyerini geçerek beynin iç kısımlarına ulaşabilirler. Nöroproteksiyonla ilgili araştırmalar günümüzde nörobilimin üzerinde en kapsamlı olarak durduğu alanlardan biridir. Bu derlemede halen araştırma konusu olan nöroprotektif ajanlarla ilgili son literatür verilerinin derlenerek sunul¬ması amaçlanmıştır

Neuroprotection and neuroprotective agents

The brain is an area where the reversibility of any damage including stroke or concussion is almost impossible. In recent literature, however, it has been reported that, some agents offer protection against neuronal cell degeneration. Neuroprotection defines the administration of some agents, which should reverse some of the neuronal damage or prevent further damage. Most of these agents are small molecules, which can penetrate blood-brain barrier and reach the inner regions of the brain. Research studies on neuroprotection are currently a comprehensive subject of the field of neuroscience. In this review, it was aimed to present the most recent reports on the studies of neuroprotective agents, which are currently the subject of ongoing research

___

  • 1. Purves D, Augustine GJ, Fitzpatrick D, et al. Neuro-science. Second edition. Massachusetts: Sinauer Asso-ciates Inc, 2001; 471-561.
  • 2. Drian MJ, Bardoul M, Konig N. Blockade of ampa/kainate receptors can either decrease or increase the survival of cultured neocortical cells depending on the stage of maturation. Neurochem Int 2001;38:509-517.
  • 3. Levi MS, Brimble MA. A review of neuroprotective agents. Curr Med Chem 2004;11:2383-2397.
  • 4. Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature 1999;399:7-14.
  • 5. Kırış T, Görgülü A. Eksitatör aminoasitler ve eksito-toksisite. Türk Nöroşirürji Dergisi 2005; 15:39-44.
  • 6. Danysz W, Parsons CG, Mobius HJ, Stoffler A, Quack G. Neuroprotective and symptomatological action of memantine relevant for Alzheimer's disease - a unified glutamatergic hypothesis on the mechanism of action. Neurotox Res 2000;2:85-97.
  • 7. Nozaki, K, Beal MF. Neuroprotective effects of L-kynu-renine on hypoxia-ischemia and NMDA lesions in neo-natal rats. J Cereb Blood Flow Metab 2000;12:400-407.
  • 8. Popovic R, Liniger R, Bickler PE. Anesthetics and mild hypothermia similarly prevent hippocampal neuron death in an in vitro model of cerebral ischemia. Anesthesiology 2000;92:1343-1349.
  • 9. Miura Y, Grocott HP, Bart RD, Pearlstein RD, Dexter F, Warner DS. Differential effects of anesthetic agents on outcome from near-complete but not incomplete global ischemia in the rat. Anesthesiology 1998;89:391-400.
  • 10. Kawaguchi M, Kimbro JR, Drummond JC, Cole DJ, Kelly PJ, Patel PM. Isoflurane delays but does not prevent cerebral infarction in rats subjected to focal ischemia. Anesthesiology 2000;92:1335-1342.
  • 11. Fox C, Dingman A, Derugin N, et al. Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2005;25:1138-1149.
  • 12. Gluckman PD, Wyatt JS, Azzopardi, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005;365:663-670.
  • 13. Rutherford MA, Azzopardi D, Whitelaw A, et al. Mild hypothermia and the distribution of cerebral lesions in neonates with hypoxic-ischemic encephalopathy. Pediat-rics 2005;116;1001-1006.
  • 14. Coulborne F, Grooms SY, Zukin RS, et al. Hypothermia rescues hippocampal ca1 neurons and attenueates down-regulation of the ampa receptor glur2 subunit after forebrain ischemia. Proc Natl Acad Sci USA 2003;100: 2906-2910.
  • 15. Jones NM, Bergeron M. Hypoxic preconditioning induces changes in hif-1 target genes in neonatal rat brain. J Cereb Blood Flow Metab 2001;21:1105-1114.
  • 16. Ley D, Oskarsson G, Bellander M, et al. Different res-ponses of myocardial and cerebral blood flow to cord occlusion in exteriorized fetal sheep. Pediatr Res 2004; 55:568-575.
  • 17. Plaisant F, Clippe A, Vander Stritcht D, et al. Recom-binant peroxiredoxin 5 protects against excitotoxic brain lesions in newborn mice. Free Radic Biol Med 2003;34: 862-872.
  • 18. Mahura IS. Cerebral ischemia-hypoxia and biophysical mechanisms of neurodegeneration and neuroprotection effects. Fiziol Zh 2003;49:7-12.
  • 19. Zou JY, Crews FT. Tnf-alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in orga-notypic brain slice cultures: neuroprotection by nf-kappa-b inhibition. Brain Res 2005;1034:11-24.
  • 20. Husson I, Rangon CM, Lelievre V, et al. BDNF-induced white matter neuroprotection and stage-dependent neuronal survival following a neonatal excitotoxic challenge. Cereb Cortex 2005 Mar;15:250-261.
  • 21. Dejda A, Sokolowska P, Novak JZ. Neuroprotective po-tential of three neuropeptides PACAP, VIP and PHI. Pharmocological Reports 2005;57:307-320.
  • 22. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983;219:979-980.
  • 23. Heikkila RE, Hess A, Duvoisin RC. Dopaminergic neuro-toxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyri-dine in mice. Science 1984;224:1451-1453.
  • 24. O'Callaghan JP, Miller DB, Reinhard JF Jr. Charac-terization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res 1990;521: 73-80.
  • 25. Francis JW, Von Visger J, Markelonis GJ, Oh TH. Neuroglial responses to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse striatum. Neurotoxicol Teratol 1995;17:7-12.
  • 26. Pan T, Fei J, Zhou X, Jankovic J, Le W. Effects of green tea polyphenols on dopamine uptake and on MPP+ -indu-ced dopamine neuron injury. Life Sci 2003;72:1073-1083.
  • 27. Tan DX, Reiter RJ, Manchester LC, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical sca-venger. Curr Top Med Chem 2002;2:181-197.
  • 28. Reiter RJ, Acuna-Castroviejo D, Tan DX, Burkhardt S. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci 2001;939:200-215.
  • 29. Baydas G, Ercel E, Canatan H, Donder E, Akyol A. Effect of melatonin on oxidative status of rat brain, liver and kidney tissues under constant light exposure. Cell Biochem Funct 2001;19:37-41.
  • 30. Reiter RJ, Garcia JJ, Pie J. Oxidative toxicity in models of neurodegeneration: responses to melatonin. Restor Neurol Neurosci 1998;12:135-142.
  • 31. Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y. Melato¬nin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse. Neurobiol Aging 2002;23:639-644.
  • 32. Baydas G, Ercel E, Canatan H, Donder E, Akyol A. Effect of melatonin on oxidative status of rat brain, liver and kidney tissues under constant light exposure. Cell Biochem Funct 2001;19:37-41.
  • 33. Hass U, Lund SP, Hougaard KS, Simonsen L. Deve-lopmental neurotoxicity after toluene inhalation exposure in rats. Neurotoxicol Teratol 1999;21:349-357.
  • 34. Burmistrov SO, Arutyunyan AV, Stepanov MG, Oparina TI, Prokopenko VM. Effect of chronic inhalation of tolue-ne and dioxane on activity of free radical processes in rat ovaries and brain. Bull Exp Biol Med 2001;132:832-836.
  • 35. Sahakian B, Jones G, Levy R, Gray J, Warburton D. The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. Br J Psychiatry 1989;154:797-800.
  • 36. Newhouse PA, Sunderland T, Tariot PN, et al. Intrave-nous nicotine in Alzheimer's disease: a pilot study. Psychopharmacology 1988;95:171-175.
  • 37. Newhouse PA, Potter A, Kelton M, Corwin J. Nicotinic treatment of Alzheimer's disease. Biol Psychiatry 2001; 49:268-278.
  • 38. Imperato A, Mulas A, Di Chiara G. Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 1986;132:337-338.
  • 39. Ferger B, Kuschinsky K. Biochemical studies support the assumption that dopamine plays a minor role in the EEG effects of nicotine. Psychopharmacology 1997;129:192-196.
  • 40. Lichtensteiger W, Hefti F, Felix D, Huwyler T, Melamed E, Schlumpf M. Stimulation of nigrostriatal dopamine neuro-nes by nicotine. Neuropharmacology 1982;21:963-968.
  • 41. Kelton MC, Kahn HJ, Conrath CL, Newhouse PA. The effects of nicotine on Parkinson's disease. Brain Cogn 2000;43:274-282.
  • 42. Fagerstrom KO, Pomerleau O, Giordani B, Stelson F. Nicotine may relieve symptoms of Parkinson's disease. Psychopharmacology 1994;116:117-119.
  • 43. Newhouse PA, Potter A, Levin ED. Nicotinic system invol-vement in Alzheimer's and Parkinson's diseases. Implica-tions for therapeutics. Drugs Aging 1997;11:206-228.
  • 44. Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A. Neuroprotective effects of alpha-tocopherol on oxidative stress in rat striatal cultures. Eur J Pharmacol 2003;465:15-22.
  • 45. Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Coope-rative Study. N Engl J Med 1997;336:1216-222.
  • 46. Topal AE, Yıldırım A, Pamukçu Ö, Ölmez G. Aort cerrahi¬sinde fenitoin ile spinal kord korunması. Dicle Tıp Dergisi 2004;31:7-14.
  • 47. Pappalardo A, Liberto A, Patti F, et al. Neuroprotective effects of topiramate. Clin Ter 2004;155:75-78.
  • 48. Sfaello I, Baud O, Arzimaogluo A, et al. Topiramate prevents excitotoxic damage in the newborn rodent brain. Neurobiol Dis 2005;20:837-848.
  • 49. Erdo F, Berzsenyi P, Andrasi F. The AMPA-antagonist talampanel is neuroprotective in rodent models of focal cerebral ischemia. Brain Res Bull 2005;66:43-49.
  • 50. Stone TW, Addae JI. The pharmacological manipulation of glutamate receptors and neuroprotection. Eur J Pharmacol 2002;447:285-296.
  • 51. Kumral A, Tugyan K, Gonenc S, et al. Protective effects of erythropoietin against ethanol-induced apoptotic neurodegenaration and oxidative stress in the developing C57BL/6 mouse brain. Brain Res Dev Brain Res 2005; 160:146-156.
  • 52. Kumral A, Genç S, Özer E, et al. Erythropoietin down-regulates bax and DP5 proapoptotic gene expression in neonatal hypoxic-ischemic brain injury. Biol Neonate 2006;89:205-210.