Solaris 10 Güneş Arabası Jantının Deneysel ve Teorik Modal Analizi ve Elektrikli Araç Jantının Parametrik Tasarım ile Hafifleştirilmesi

Bu çalışmada, dönmeyen lastiksiz Solaris 10 güneş arabası jantının 2018 ve 2019 modellerinin doğal frekansları, serbest sınır koşulları altında darbe çekici testi ile deneysel olarak belirlenmiş ve sonuçlar ANSYS Sonlu Elemanlar Analiz yazılımında elde edilen doğal frekans sonuçları ile karşılaştırılmıştır. Sayısal ve deneysel olarak elde edilen doğal frekans sonuçları karşılaştırıldığında, maksimum yüzde 7.46 hata elde edilmiştir. Deneysel olarak elde edilen sonuçlar doğrulanmış ve 2018 jant modeli ile 2019 jant modelinin 7. mod frekans ve üstü frekanslarının 200 Hertz'in üstünde olduğu gösterilmiştir. ANSYS- Modal Analiz modülünde gözlemlenen mod şekilleri, yüksek genlik oluşturabilecek doğal frekanslar için gösterilmiştir. 2019 Jant modeli için parametrik CAD modeli kullanılarak bir tasarım optimizasyonu çalışması gerçekleştirilmiştir. Tasarım optimizasyonu sonucunda 2019 jant modelinin kütlesi % 6.5 azalırken, maksimum eşdeğer von Mises gerilmesi % 2 azaltılmıştır. Böylelikle, ANSYS Sonlu elemanlar analizi yazılımında parametrik çalışma ile daha hafif bir jant elde edilmiş ve maksimum eşdeğer von Mises gerilmesi 120 MPa'nın altında kalması sağlanmıştır.

Numerical and Experimental Modal Analysis of Wheels of Solaris 10 Solar Car and Parametric Design of Lightweight EV Wheel

In this study, the natural frequencies of Solaris 10 Solar Car’s 2018 and 2019-Model wheels were determined experimentally by the impact hammer test under free-free boundary conditions and the results were compared with the natural frequency results obtained using ANSYS FEA software. Comparing the numerical and experimental vibration analysis, a maximum percent error of 7.46% was observed. The 7th and upper mode frequencies of 2018 and 2019 wheel models were shown to be above 200 Hz and the experimental results were validated. After expressing the mode shapes in the ANSYS-Modal Analysis, a parametric study was performed for the 2019 wheel model using the ANSYS- Parametric Design. As a result of the parametric design, the mass of the 2019 wheel model was decreased by 6.5% while maximum equivalent von Mises stress was decreased by 2%. Thus, a lighter wheel design was obtained with ANSYS FEA software and maximum equivalent von Mises stress value was achieved to be below pre-defined limit of 120 (MPa).

___

  • Bertini,L., Monelli,B., Neri, P., Santus, C., Guglielmo, A. 2014. Robot Assisted Modal Analyis on a Stationary Bladed Wheel, Proceedings of the ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. DOI: 10.1115/ESDA2014-20636
  • Sun-Min Kim, Jae-Hoon Ha, Sung-Ho Jeong, Sun-Kyu Lee, 2001. Effect of joint conditions on the dynamic behavior of a grinding wheel spindle, International Journal of Machine Tools & Manufacture, Volume. 41,p. 1749–1761 . DOI: 10.1016/S0890-6955(01)00040-2
  • Scavuzzo, R. W., Charek, L. T ., Sandy, P. M. and Shteinhauz, G. D. 1994. Influence of Wheel Resonance on Tire Acoustic Cavity, Journal of Passenger Cars, Volume. 103, p. 643-648. DOI: 10.4271/940533
  • Hebba, M. S., Dabair, M. 2019. Static Structural, Modal and Harmonic Analysis of Alloy Car Wheel Rim using ANSYS Workbench, International Journal of Engineering Research & Technology (IJERT), Volume. 8, p. 599-611. DOI: IJERTV8IS070226
  • Shwetabh Suman, Abhimanyu Abrol, J. and Ravi, K.2.17. Impact and Modal Analysis for Different Alloy Wheel, IOP Conference Series: Materials Science and Engineering, Volume. 263, p. 1-10. DOI: 10.1088/1757-899X/263/6/062074
  • Akbar, M. M., Farahani, M. 2018. Modal Analysis of a Non-rotating Inflated Tire using Experimental and Numerical Methods,International Journal of Engineering Innovation & Research, Volume. 7, p. 15-21. ISSN: 2277 – 5668.
  • Leissa, A. W. 1969. Vibration of plates, NASA OHIO STATE UNIV COLUMBUS, 160p.
  • Srinivasan, V., Swarnamani S., Ramamurti, V. 1980. Free Vibration of a Wheel, Journal of Sound and Vibration, Volume. 70(3),p. 461-462. DOI: PASCAL8130013818
  • Thompson, D.J. 1993. Wheel-rail Noise Generation, Part II: Wheel Vibration, Journal of Sound and Vibration, Volume. 161, p. 401-419. DOI: 10.1006/jsvi.1993.1083
  • Pieters, R. 2007. Experimental Modal Analysis of an Automobile Tire under Static Load, Eindhoven: Technische Universitei, Traineeship Report, Eindhoven.
  • Zamri Mohamed, Xu Wang, 2015. A Study of Tyre Cavity Resonance and Noise Reduction Using Inner Trim, Mechanical Systems and Signal Processing, Volumes. 50–51, p. 498-509. DOI: 10.1016/j.ymssp.2014.05.044
  • Chiesa, A., Oberto, L. and Tamburini, L. 1964. Transmission of Tyre Vibrations, Automobile Engineer, Volume:54 (3), p. 520-530.
  • Gong, S., Savkoor, A., and Pacejka, H. 1993. The Influence of Boundary Conditions on the Vibration Transmission Properties of Tires, SAE Paper 931280. DOI: 10.4271/931280
  • Senjanović, I., Alujević, N., Ćatipović, I., Čakmak, D., & Vladimir, N. 2018. Vibration analysis of rotating toroidal shell by the Rayleigh-Ritz method and Fourier series, Engineering Structures, Volume: 173, p. 870-891. DOI: 10.1016/j.engstruct.2018.07.029
  • Kindt, P., Sas, P., & Desmet, W.2009. Measurement and Analysis of Rolling Tire Vibrations, Optics and Lasers in Engineering Volume. 47, p. 443–453. DOI: 10.1016/j.optlaseng.2008.06.017
  • Potts, G. R., Bell, C. A., Charek, L. T., & Roy, T. K. 1977. Tire Vibrations, Tire Science and Technology, Volume: 5, p. 202-225. DOI: 10.2346/1.2167240
  • Chittilla, K., Yeola, Y., Tiwari, A., & Rajamanickam, R. 2013. Effect of Excitation Methods on Experimental Modal Analysis of Passenger Car Tire, SAE Technical Paper 2013-01-2854. DOI: 10.4271/2013-01-2854
  • Maes, J., & Sol, H. 2003. A Double Tuned Rail Damper—Increased Damping at the Two First Pinned–pinned Frequencies, Journal of Sound and Vibration, Volume. 267, p. 721–737. DOI: 10.1016/S0022-460X(03)00736-3
  • Richards, T. R., Charek, L. T., & Scavuzzo, R. W. 1986. The Effects of Spindle and Patch Boundary Conditions on Tire Vibration Modes, SAE Transactions, Volume. 95, p. 19-30.
  • Kung, L. E., Soedel, W., & Yang, T. Y.1986. On the Dynamic Response at the Wheel Axle of a Pneumatic Tire, Journal of Sound and Vibration, Volume: 107, pp. 195-213. DOI: 10.1016/0022-460X(86)90232-4
  • Zegelaar, P. W. A.1997. Modal Analysis of Tire In-Plane Vibration, SAE TECHNICAL PAPER SERIES, No: 971101.
  • Bosi, C., Garagnani, G. L., & Tovo, R. 2002. Fatigue Properties of a Cast Aluminium Alloy for Rims of Car Wheel, Metallurgical Science and Technology, Volume. 20, p. 3-8.
  • James M.N., D.J. Hughes, D.G. Hattingh, G. Mills, P.J. Webster. 2009. Residual Stress and Strain in MIG Butt Welds in 5083-H321 Aluminium: As-welded and Fatigue Cycled, International Journal of Fatigue, Volume. 31,p.28:40, DOI: 10.1016/j.ijfatigue.2008.04.010
  • T.B. Korkut, E. Armakan, O. Ozaydin, K. Ozdemir, A. Goren.2020. Design and comparative strength analys is of wheel rims of a lightweight electric vehicle using Al6063 T6 and Al5083 aluminium alloys. Journal of Achievements in Materials and Manufacturing Engineering. Volume.99, p.57-63. DOI:10.5604/01.3001.0014.1776