Bazı Dioksaborepin Türevlerinin Sentezi ve Antimikrobiyal Aktivite Tayini

Bu çalışmanın amacı, bazı dioksaborepin bileşiklerini (2a-c) sentezlemek ve (2a) bileşiği için çeşitli mikroorganizmalara karşı antimikrobiyal aktivite sonuçlarını değerlendirmektir. Mikrodilüsyon yöntemi için Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (ATCC 25923), Echerichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Streptococcus mutans (ATCC 25175) ve Candida albicans (ATCC 90028) kullanılmıştır. Dioksaborepin bileşiği (2a) özellikle hastane enfeksiyonuna neden olabilen P. aeruginosa‘ya karşı iyi sonuç vermiştir. Dioksaborepin bileşiği (2a) Gram negatif ve Gram pozitif bakteriler ve mantara karşı aktivite göstermiştir. Bu çalışmadaki sonuçlara göre günümüzde, bor içeren yeni bileşiklerin sentezi ve aktivite testleri önemli bir yer tutmaktadır. Bu tür bileşikler geliştirilebilir ve gelecekte daha etkili, yeni antibakteriyel ve antifungal madde tasarımında kullanılabilirler.

Synthesis of Some Dioxaborepine Derivatives and Determination of Antimicrobial Activity

The aim of this study, synthesis of some dioxaborepine compounds (2a-c) and for compound (2a) evaluation of antimicrobial activity results against several microorganisms. Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (ATCC 25923), Echerichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Streptococcus mutans (ATCC 25175) and Candida albicans (ATCC 90028) were used for the microdilution method. Dioxaborepine compound (2a) has been good result against particularly P. aeruginosa which is causing a nosocomial infection. Dioxaborepine compound (2a) showed activity against Gram negative and Gram positive bacteria and fungi. For the results of this study, nowadays, synthesis of boron, including new compounds and their activity tests has an importance. Such compounds can be improved and used for the design of more potent, a new class of antibacterial and antifungal agents in the future.

___

  • [1] Krauss, H., Weber, A., Appel, M., Enders, B., Graevenitz, A. V., Isenberg, H. D., Schiefer, H. G., Slenczka, W., Zahner, H. 2003. Zoonoses. Infectious diseases transmissible from animals to humans. 3rd edition, 456s. ASM Press. American Society for Microbiology, Washington DC., USA. ISBN 1-55581-236-8.
  • [2] Serpi, M., Özdemir, Z. Ö., Salman, Y. 2012. Bazı Bitki Ekstrelerinin Propionibacterium Acnes Üzerine Antibakteriyel Etkilerinin Araştırılması. KSÜ Doğa Bilimleri Dergisi, 15(1), 7-12.
  • [3] Öztürk, R. 2008. Akılcı Antibiyotik Kullanımı ve Ülkemizde Antimikrobik Maddelere Direnç Sorunu. Toplumdan Edinilmiş Enfeksiyonlara Pratik Yaklaşımla. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Sürekli Tıp Eğitimi Etkinlikleri, Sempozyum Dizisi, 7-8 Şubat, İstanbul.
  • [4] Ciaravino, V., Plattner, J., Chanda, S. 2013. An Assessment of the Genetic Toxicology of Novel Boron-Containing Therapeutic Agents. Environmental and Molecular Mutagenesis, 54, 338-346.
  • [5] Li, X., Zhang, Y. K., Plattner, J. J., Mao, W., Alley, M. R. K., Xia, Yi., Hernandez, V., Zhou, Y., Ding, C. Z., Li, J., Shao, Z., Zhang H., Xu, M. 2013. Synthesis and Antibacterial Evaluation of A Novel Tricyclic Oxaborole-Fused Fluoroquinolone. Bioorganic & Medicinal Chemistry Letters, 23, 963-966.
  • [6] Campbell-Verduyn, L. S., Bowes, E. G., Li, H., Vallee, A. M., Vogels, C. M., Decken, A., Gray, C. A., Westcott, S. A. 2014. Heterocyclic Aminoboron Compounds as Antituberculosis Agents. Heteroatom Chemistry, 25(2), 100-106.
  • [7] Baker, S. J., Akama, T., Zhang, Y. K., Sauro, V., Pandit, C., Singh, R., Kully, M., Khan, J., Plattner, J. J., Benkovic, S. J., Lee, V., Maples, K. R. 2006. Discovery of A New Boron-Containing Antifungal Agent, 5-Fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), for the Potential Treatment of Onychomycosis. Bioorganic & Medicinal Chemistry Letters, 16, 5963-5967.
  • [8] McKinney, D. C., Zhou, F., Eyermann, C. J., Ferguson, A. D., Prince, D. B., Breen, J., Giacobbe, R. A., Lahiri, S., Verheijen, J. C. 2015. 4,5-Disubstituted 6-aryloxy-1,3-dihydrobenzo[c][1,2]oxaboroles are Broad-Spectrum Serine β-Lactamase Inhibitors. ACS Infectious Diseases, 1(7), 310-316.
  • [9] Hernandez, V., Crepin, T., Palencia, A., Cusack, S., Akama, T., Baker, S. J., Bu, W., Feng, L., Freund, Y. R. 2013. Discovery of A Novel Class of Boron-Based Antibacterials with Activity Against Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 57(3), 1394-1403.
  • [10] Hicks, J. W., Kyle, C. B., Vogels, C. M., Wheaton, S. L., Baerlocher, F. J., Decken, A., Westcott, S. A. 2008. Synthesis, Characterization, and Antifungal Activity of Boron-Containing Thiosemicarbazones. Chemistry & Biodiversity, 5, 2415-2422.
  • [11] Trivedi, R., Reddy, E. R., Kumar, C. K., Sridhar, B., Kumar, K. P., Rao, M. S. 2011. Efficient Synthesis, Structural Characterization and Antimicrobial Activity of Chiral Aryl Boronate Esters of 1,2-O-isopropylidene-α-D-xylofuranose. Bioorganic & Medicinal Chemistry Letters, 21, 3890-3893.
  • [12] Pir, M., Agirbas, H., Budak, F., Ilter, M. 2016. Synthesis, Characterization, Antimicrobial Activity, and QSAR Studies on Substituted Oxadiazaboroles. Medicinal Chemistry Research, 25(9), 1794-1812.
  • [13] Pir, M., Agirbas, H., Budak, F., Sahin, O. 2017. Synthesis, Characterization, Antimicrobial Activity and QSAR Studies of Some New 6-Substituted phenyl 3-(4-chlorophenyl)-3a,4,8,8a-tetrahydro-[1,3,2]dioxaborepino[5,6-d]isoxazoles. Heteroatom Chemistry, 28(2), e21363, 2017.
  • [14] De-jun, L., Zi-xing, S., Guo-ping, W., Jin-gui, Q. 2003. Preparation of (R)- and (S)-2-Allyl-1,3,2-Dinaphtho(α,β)[d.f]dioxaborepin and Their Reactions with Aldehydes. Wuhan University Journal of Natural Sciences, 8(4), 1138-1142.
  • [15] Clinical Laboratory Standarts Institute (CLSI) (formerly NCCLS). 2006. Methods for iluation antimicrobial susceptibility tests for bacteria that grow aerobically, Approved Std. M-7, A-7, USA.
  • [16] Clinical Laboratory Standarts Institute (CLSI) (formerly NCCLS). 2002. Reference method for broth dilution antifungal susceptibility testing of yeast. Approved standard, CLSI document M27 A2, 2nd edition, CLSI, Wayne: PA, USA.
  • [17] Clinical Laboratory Standards Institute (CLSI). 2005. Performance standards for antimicrobial susceptibility testing. Fifteenth Informational Supplement LSI-M110-S15, CLSI: Wayne, PA.
  • [18] Karaaslan, E. 2013. Çevreden izole edilen suşların antimikrobiyal direnç durumlarının araştırılması ve klinik suşlarla karşılaştırılması. İstanbul Üniversitesi, Sağlık Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
  • [19] Martinez, A., Kolvek, S. J., Yip, C. L. T., Hopke, J., Brown, K. A., Macneil, I. A., Osburne, M. S. 2004. Genetically Modified Bacterial Strains and Novel Bacterial Artificial Chromosome Shuttle Vectors for Constructing Environmental Libraries and Detecting Heterologous Natural Products in Multiple Bacterial Hosts. Applied and Environmental Microbiology, 70(4), 2452-2463.
  • [20] Yadav, S., Swami, M., Singh, R. V. 2010. In vitro Antibacterial and Antifungal Activities of Some Sulfur-Nitrogen-Oxygen and Oxygen-Nitrogen-Oxygen Donor Bifunctional Tridentate Schiff Bases and Their Boron(III) Complexes. Phosphorus Sulfur and Silicon, 185, 394-401.
  • [21] Ross, J. E., Scangarella-Oman, N., Jones, R. N. 2013. Determination of Disk Diffusion and MIC Quality Control Guidelines for GSK2251052: A Novel Boron-Containing Antibacterial. Diagnostic Microbiology and Infectious Disease, 75, 437-439.