S-curve Motion Profile Design for Vibration Control of Single Link Flexible Manipulator

In flexible manipulators, it is important the reduce end-effector vibrations. Suppression of endeffector vibrations significantly increases the precision of the performed work. Selection of velocityprofile for giving motion to a manipulator is crucial to reduce the vibrations especially during highspeed motions. In this study, the effect of 3rd order S-curve velocity motion profile time parameterswhich is related with natural period of flexible manipulator on endpoint vibrations of a flexiblebeam are investigated. The S-curve motion profile results and trapezoidal motion profile results arealso compared. The acceleration and deceleration times of both S-curve and trapezoidal velocitymotion profiles are selected equal. Finite elements model of flexible robot manipulator is createdand solution of the transient response under given velocity profile is obtained by using Newmarkmethod. The results obtained from the Newmark method are compared with the results obtainedfrom the model established using ANSYS program. The effects of time parameters of S-curve motionprofiles on endpoint vibrations were shown by comparing in terms of amplitudes.

Tek Eksen Esnek Manipülatörün Titreşim Kontrolü için Seğrisi Hareket Profili Tasarımı

Esnek manipülatörlerde, uç işlevcinin titreşimlerinin azaltılması önemlidir. Son uç işlevcinin titreşimlerinin bastırılması, yapılan işin hassasiyetini önemli ölçüde artırır. Bir manipülatörü hareket ettirmek için gerekli hız profilinin seçimi, özellikle yüksek hızlı hareketler sırasında titreşimleri azaltmak için çok önemlidir. Bu çalışmada, esnek manipülatörün doğal periyodu ile ilişkili 3. dereceden S-eğrisi hız hareket profili zaman parametrelerinin esnek bir kirişin uç nokta titreşimleri üzerindeki etkisi incelenmiştir. S-eğrisi hareket profili sonuçları ve trapez hareket profili sonuçları da karşılaştırılır. Hem S-eğrisi hem de trapez hız hareket profillerinin hızlanma ve yavaşlama süreleri eşit olarak seçilmiştir. Esnek robot manipülatörünün sonlu elemanlar modeli oluşturulmuş ve verilen hız profili altındaki geçici rejim tepkisinin çözümü Newmark yöntemi kullanılarak elde edilmiştir. Newmark yönteminden elde edilen sonuçlar ANSYS programı kullanılarak oluşturulan modelden elde edilen sonuçlarla karşılaştırılır. S-eğrisi hareket profillerinin zaman parametrelerinin uç nokta titreşimleri üzerindeki etkileri, oluşan genlikler karşılaştırılarak gösterilmiştir.

___

[1] Gao, Y., et al., 2012, Flexible Manipulators: Modeling, Analysis and Optimum Design. Academic Press, 260. DOI: 10.1016/C2011-0-07379-9.

[2] Benosman, M. and G. Le Vey, 2004, Control of Flexible Manipulators: A Survey, Robotica, Volume. 22(5), p. 533-545. DOI: 10.1017/S0263574703005642.

[3] Dwivedy, S.K. and P. Eberhard, 2006, Dynamic Analysis of Flexible Manipulators, a Literature Review, Mechanism and machine theory, Volume. 41(7), p. 749-777. DOI: 10.1016/j.mechmachtheory.2006.01.014.

[4] Sayahkarajy, M., Z. Mohamed, and A.A. Mohd Faudzi, 2016, Review of Modelling and Control of FlexibleLink Manipulators, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, Volume. 230(8), p. 861-873. DOI: 10.1177/0959651816642099.

[5] Ankarali, A. and H. Diken, 1997, Vibration Control of an Elastic Manipulator Link, Journal of Sound and Vibration, Volume. 204(1), p. 162-170. DOI: 10.1006/jsvi.1996.0897.

[6] Diken, H. and A. Alghamdi, 2003, Residual Vibration Response Spectra for a Servomotor-Driven Flexible Beam, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Volume. 217(5), p. 577-583. DOI: 10.1243/095440603765226867.

[7] Malgaca, L., et al., 2016, Residual Vibration Control of a Single-Link Flexible Curved Manipulator, Simulation Modelling Practice and Theory, Volume. 67, p. 155-170. DOI: 10.1016/j.simpat.2016.06.007.

[8] Yavuz, Ş., L. Malgaca, and H. Karagülle, 2016, Vibration Control of a Single-Link Flexible Composite Manipulator, Composite Structures, Volume. 140, p. 684-691. DOI: 10.1016/j.compstruct.2016.01.037.

[9] Karagülle, H., et al., 2017, Vibration Control of a Two-Link Flexible Manipulator, Journal of Vibration and Control, Volume. 23(12), p. 2023-2034. DOI: 10.1177/1077546315607694.

[10] Castain, R.H. and R.P. Paul, 1984, An on-Line Dynamic Trajectory Generator, The International Journal of Robotics Research, Volume. 3(1), p. 68-72. DOI: 10.1177/027836498400300106.

[11] Liu, C. and Y. Chen, 2018, Combined S-Curve Feedrate Profiling and Input Shaping for Glass Substrate Transfer Robot Vibration Suppression, Industrial Robot: the international journal of robotics research and application, Volume. 45(4), p. 549-560. DOI: 10.1108/ir-11-2017-0201.

[12] Liu, S. 2002, An on-Line Reference-Trajectory Generator for Smooth Motion of Impulse-Controlled Industrial Manipulators, IEEE, 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No. 02TH8623), 3-5 July, Maribor, Slovenia, p. 365-370. DOI: 10.1109/AMC.2002.1026947.

[13] Lu, T.-C. and S.-L. Chen, 2016, Genetic AlgorithmBased S-Curve Acceleration and Deceleration for Five-Axis Machine Tools, The International Journal of Advanced Manufacturing Technology, Volume. 87(1-4), p. 219-232. DOI: 10.1007/s00170-016- 8464-0.

[14] Mu, H., et al., 2008, Third-Order Trajectory Planning for High Accuracy Point-to-Point Motion, Frontiers of Electrical and Electronic Engineering in China, Volume. 4(1), p. 83-87. DOI: 10.1007/s11460-009- 0017-y.

[15] Boryga, M. and A. Graboś, 2009, Planning of Manipulator Motion Trajectory with Higher-Degree Polynomials Use, Mechanism and Machine Theory, Volume. 44(7), p. 1400-1419. DOI: 10.1016/j.mechmachtheory.2008.11.003.

[16] Lambrechts, P., M. Boerlage, and M. Steinbuch, 2005, Trajectory Planning and Feedforward Design for Electromechanical Motion Systems, Control Engineering Practice, Volume. 13(2), p. 145-157. DOI: 10.1016/j.conengprac.2004.02.010.

[17] Nguyen, K.D., T.-C. Ng, and I.-M. Chen, 2008, On Algorithms for Planning S-Curve Motion Profiles, International Journal of Advanced Robotic Systems, Volume. 5(1), p. 11. DOI: 10.5772/5652.

[18] Meckl, P.H. and P.B. Arestides. 1998, Optimized SCurve Motion Profiles for Minimum Residual Vibration, IEEE, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No. 98CH36207), 26-26 June, Philadelphia, PA, USA, p. 2627-2631. DOI: 10.1109/ACC.1998.688324.

[19] Li, H., et al. 2006, A New Motion Control Approach for Jerk and Transient Vibration Suppression, IEEE, 2006 4th IEEE International Conference on Industrial Informatics, 16-18 Aug., Singapore, p. 676-681. DOI: 10.1109/INDIN.2006.275642.

[20] Li, H., et al., 2009, Motion Profile Design to Reduce Residual Vibration of High-Speed Positioning Stages, IEEE/ASME Transactions On Mechatronics, Volume. 14(2), p. 264-269. DOI: 10.1109/TMECH.2008.2012160.

[21] Kim, B., H.H. Yoo, and J. Chung, 2017, Robust Motion Profiles for the Residual Vibration Reduction of an Undamped System, Journal of Mechanical Science and Technology, Volume. 31(10), p. 4647-4656. DOI: 10.1007/s12206-017-0911-9.

[22] Fang, Y., et al., 2019, Smooth and Time-Optimal SCurve Trajectory Planning for Automated Robots and Machines, Mechanism and Machine Theory, Volume. 137, p. 127-153. DOI: 10.1016/j.mechmachtheory.2019.03.019.

[23] Bathe, K., 2014, Finite Element Procedures, 2nd ed., USA: Prentice Hall, Person Education, Inc, 1065. [24] W. T. Thomson, M.D.D., 1988, Theory of Vibration with Applications, 3rd ed. Englewood Cliffs, Prentice-Hall, 500.

[25] Newmark, N.M., 1959, A Method of Computation for Structural Dynamics, Journal of the engineering mechanics division, Volume. 85(3), p. 67-94. DOI: 10.1061/JMCEA3.0000098.