SOL-JEL YÖNTEMİ İLE HAZIRLANMIŞ ZnO NANOPARTİKÜLLERİN OPTİMİZASYONU

Çinko oksit (ZnO) nanopartikülleri mükemmel optik, elektriksel, mekanik ve kimyasal özelliklerinden dolayı fotokatalize, kompozit malzemelere, kimyasal, gaz, buhar ve nem sensörlerine ve boyaya duyarlı güneş pillerine uygulanabilmektedir. Bu çalışmanın amacı, sol-jel yöntemiyle ZnO nanopartiküllerin sentezlenmesi ve karakterize edilmesidir. ZnO nanopartikülleri çinko asetat dihidrat ve oksalik asit dihidrat başlangıç kimyasalları ve etil alkol çözücüsü kullanılarak hazırlanmıştır. Başlangıç çözeltisi molar konsantrasyonu, pH ve kalsinasyon sıcaklığı gibi işlem parametrelerinin sentezlenen nanopartikül boyutu üzerine etkisi incelenmiştir. ZnO nanopartiküllerinin boyutu ZetaSizer cihazı kullanılarak belirlenmiştir. Sentezlenen ZnO nanopartiküllerinin yapısal ve kimyasal özellikleri X-Işını difraksiyonu (XRD) ve Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR) ile belirlenmiştir. Elde edilen sonuçlar en düşük nanopartikül boyutunun başlangıç çözeltisinin 0,005M değerinde hazırlanması ve 400 °C sıcaklıkta kalsinasyon işlemine tabi tutulması sonucunda elde edildiğini göstermiştir.

OPTIMIZATION OF ZnO NANOPARTICLES PREPARED BY SOL-GEL TECHNIQUE

Zinc oxide (ZnO) nanoparticles can potentially be applied to photo-catalysis, composite materials, chemical, gas, vapor, and humidity sensors and dye-sensitized solar cells due to their excellent optical, electrical, mechanical and chemical properties. The aim of this study was to synthesize ZnO nanoparticles by sol-gel technique and characterize them. ZnO nanoparticles were prepared from zinc acetate dihydrate and oxalic acid dihydrate precursors and ethyl alcohol solvent. The effects of process parameters such as the precursor solution molar concentration, pH and calcination temperatures on the size of the synthesized nanoparticles were investigated. Particle size of synthesized ZnOnanoparticles was determined by using a ZetaSizer instrument. Structural and chemical properties of synthesized ZnO nanoparticles were investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) respectively. Results show that the lowest ZnO nanoparticles size obtained with precursor solution prepared at 0.005M and calcined at 400 °C

___

  • Sahoo, T., Kim, M., Baek, J. H., Jeon, S. R., Kim, J. S., Yu, Y. T., Lee, C. R., Lee, I. H. 2011. Synthesis and characterization of porous ZnO nanoparticles by hydrothermal treatment of a pure aqueous precursor,
  • Bulletin, Cilt. 46, s. 525–530. DOI: 1016/j.materresbull.2011.01.00 Research
  • Hong, R., Pan, T., Qian, J., Li, H. Synthesis and surface modification of ZnO nanoparticles, Chemical Engineering Journal, Cilt. , 1016/j.cej.2006.03.003
  • Wang, Z. L. 2004. Nanostructures of zinc oxide, Materials Today, s. 33. (04)00286-X
  • Tan, D., Zhou S., Qiu, J., Khusro, N. Preparation of functional nanomaterials with femto second laser ablation in solution, Journal of Photobiology C: Photochemistry Reviews, Cilt. 17, s. 50-68. DOI: 1016/j.jphotochemrev.2013.08. and Dong, X., Yang, P., Shi, R. 2014.
  • Fabrication of ZnO nanorod arrays via hydrothermal method, Materials Letters, Cilt. 135, s. 96-98. DOI: 1016/j.matlet.2014.07.102
  • Chen, Y., Shen, Y., Wang, S., Huang, J. 2014. Fabrication of one- dimensional ZnO nanotube and nanowire arrays with an anodic alumina electrochemical deposition, Thin
  • Solid Films, Cilt. 570, s. 303-309. DOI: 10.1016/j.tsf.2014.03.014
  • Vafaee, M., Ghamsari, M. S. 2007.
  • Preparation and characterization of ZnO nanoparticles by a novel sol–gel route, Materials Letters, Cilt. 61, s. 3265–3268. DOI: 1016/j.matlet.2006.11.089
  • Wang, G. Z., Wang, Y., Yau, M.Y., To, C.Y., Deng, C.J., Dickon H.L. 2005.
  • Synthesis of ZnO hexagonal columnar pins by chemical vapor deposition, Materials Letters, Cilt. , 1016/j.matlet.2005.07.023 DOI:
  • Khalil, M. I., Al-Qunaibit, M. M., Al- zahem, A. M., Labis, J. P. 2014.
  • Synthesis and characterization of ZnO nanoparticles by thermal decomposition of a curcumin zinc complex, Arabian Journal of Chemistry, Cilt 7, s. 1178–1184. DOI: 10.1016/j.arabjc.2013.10.025
  • Anandan, S., Muthukumaran, S., Ashokkumar, M. 2014. Structural and optical properties of Y, Cu Co- doped ZnO nanoparticles by sol– gel method, Superlattices and Microstructures, Cilt. 74, s. 247– 1016/j.spmi.2014.07.008 DOI:
  • Reda, S. M. 2010. Synthesis of ZnO and Fe2O3 nanoparticles by sol–gel method and their application in dye-sensitized solar cells, Materials Science
  • Processing, Cilt. 13, s. 417–425. DOI: doi:10.1016/j.mssp.2011.09.007
  • Yasakau, K. A., Carneiro, J., Zheludkevich, M. L., Ferreira, M. G. S. 2014. Influence of sol-gel process parameters on the protection properties of sol–gel coatings applied on AA2024, Surface &
  • Coatings Technology, Cilt. 246, s. 6– 1016/j.surfcoat.2014.02.038 DOI:
  • Milea, C.A., Bogatu, C., Duta, A. The influence of parameters in Silica sol-gel process, Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences, Cilt. 4 (53). Baruah, S., Dutta, J. 2009. pH- dependent growth of zinc oxide nanorods, Journal of Crystal Growth, Cilt. 311, s. 2549–2554. DOI: 1016/j.jcrysgro.2009.01.135
  • Srivastava, A., Kumar, N., Misra, K. P., Khare, S. 2014. Blue-light luminescence enhancement and increased band gap from calcium- doped zinc oxide nanoparticle films,
  • Semiconductor Processing, Cilt. 26, s. 1016/j.mssp.2014.05.001 in –266.
  • Husainn, S., Alkhtaby, L. A., Giorgetti, E., Zoppi, A., Miranda, M. M. 2014. Effect of Mn doping on structural and optical properties of sol-gel derived ZnO nanoparticles,
  • Journal of Luminescence, Cilt. 145, s. 1016/j.jlumin.2013.07.003 DOI:
  • Zandi, S., Kameli, P., Salamati, H., Ahmadv, H. Hakimi, M. 2011. Microstructure properties of ZnO nanoparticles prepared by a simple method, Physica B, Cilt. 406, s. 3215–3218. DOI: 10.1016/j.physb.2011.05.026
  • Sharma, A., Singh, B.P., Dhar, S., Gondorf, A., Spasova, M. 2012.
  • Effect of surface groups on the luminescence property of ZnO nanoparticles synthesized by sol– gel route, Surface Science, Cilt. 606, s. 1016/j.susc.2011.09.006 DOI:
  • Patil, S. L., Chougule, M. A., Pawar, S. G., Sen, S., Patil, V. B. 2012. Effect of Camphor Sulfonic Acid Doping on
  • Optical and Electrical Transport Properties on Polyaniline-ZnO Nanocomposites, Soft Nanoscience Letters, Cilt. 2, s. 46-53. DOI: 4236/snl.2012.23009
  • Sohail, A., Faraz, M., Arif, H., Bhat, S. A., Siddiqui, A. A., Bano, B.2017.
  • Deciphering the interaction of bovine heart cystatin with ZnO nanoparticles: Spectroscopic and thermodynamic International Journal of Biological Macromolecules, Cilt. 95, s. 1056– 1016/j.ijbiomac.2016.10.095 DOI:
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi