Negatif elektrik yükü taşıyan E. faecalis bakterilerinin elektrik alan etkisi ile farklı gözenekli boyutlarda üretilen GS/Si yapılara yaklaştırılması sonucu iletkenlik ve kapasitans değişimleri

Bakterilerin elektrik yükü taşıması, elektrik alanından etkilenebileceklerinin bir göstergesidir. Buna örnek olarak, negatif elektrik yükü taşıyan Enterococcus faecalis (E. faecalis) bakterilerinin elektrik alan etkisi ile istenilen bir yöne doğru hareket ettirilebildiği tespit edildi. Çalışmada, gözenekli silisyum (GS) tabanlı sensör platformlarını elde etmek için n tipi tek kristal silisyum kullanılarak farklı parametrelerde uygulanan elektrokimyasal anodizasyon işlemi sonucu %60 gözeneklilik (7-15 μm gözenek boyutlarında) ve % 50 gözeneklilik (1-5 μm gözenek boyutlarında) olmak üzere iki farklı özellikte In/Si/GS/Ag yapılar elde edildi. Elde edilen bu GS tabanlı yapılar, negatif elektrik yükü bulunan E. faecalis bakterisi içeren sıvılara daldırılarak 0-5 kV/cm elektrik alan değerlerinin ileri yönde ve ters yönde uygulanması sonucu gözeneklere bakteri yaklaştırılması ve uzaklaştırılmasına farklı boyutlarda üretilmiş gözeneklerin etkisinin gösterilmesi amaçlandı. Gözenek boyutlarının ayarlanabilir olması nedeniyle bakterilerin farklı gözenek boyutlarına sahip yapılardaki elektriksel ölçümleri incelenerek, frekansa bağlı iletkenlik-frekans ve kapasitans-frekans değerleri tartışıldı.

Changes in conductivity and capacitance as a result of the approach of E. faecalis bacteria carrying negative electrical charge to PS/Si structures produced in different porous sizes with the effect of electric field

The fact that bacteria carry an electric charge is an indication that they can be affected by the electric field.As an example, it has been determined that Enterococcus faecalis (E. faecalis) bacteria carrying negative electrical charge can be moved in a desired direction by the effect of electric field.In this study, the porous silicon (PS) based sensor platform for obtaining the n-type single crystal electrochemical anodization process results apply to different parameters using silicon 60% porosity (7-15μmin pore size) and 50% porosity (the 1-5 μmpore size) to In / Si / PS / Ag structures with two different properties were obtained.These PS-based structures obtained were immersed in fluids containing negative electric charge E. faecalis bacteria and 0-5 kV / cm electric field values were applied in forward and reverse direction to show the effect of pores produced in different sizes on the approach and removal of bacteria to the pores.Since the pore sizes are adjustable, the electrical measurements of bacteria in structures with different pore sizes were examined, and the frequency-dependent conductivity-frequency and capacitance-frequency values were discussed.

___

  • A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends in Biotechnology. 2009, doi: 10.1016/j.tibtech.2008.12.004.
  • R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys., 1992, doi: 10.1063/1.350839.
  • A. Julbe and J. D. F. Ramsay, “Chapter 4 Methods for the characterisation of porous structure in membrane materials,” Membr. Sci. Technol., 1996, doi: 10.1016/S0927-5193(96)80007-6.
  • K. Kobayashi, F. A. Harraz, S. Izuo, T. Sakka, and Y. H. Ogata, “Macropore growth in a prepatterned p-type silicon wafer,” Phys. Status Solidi Appl. Mater. Sci., 2007, doi: 10.1002/pssa.200674325.
  • A. Uhlir, “Electrolytic Shaping of Germanium and Silicon,” Bell Syst. Tech. J., 1956, doi: 10.1002/j.1538-7305.1956.tb02385.x.
  • P. M. Z. Hasan, V. K. Sajith, M. Shahnawaze Ansari, J. Iqbal, and A. Alshahrie, “Influence of HF concentration and current density on characteristic morphological features of mesoporous silicon,” Microporous Mesoporous Mater., 2017, doi: 10.1016/j.micromeso.2017.04.059.
  • I. Rea et al., “Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions,” J. Appl. Phys., 2010, doi: 10.1063/1.3273410.
  • T. J. Barnes, K. L. Jarvis, and C. A. Prestidge, “Recent advances in porous silicon technology for drug delivery,” Therapeutic Delivery. 2013, doi: 10.4155/tde.13.52.
  • B. Gupta, Y. Zhu, B. Guan, P. J. Reece, and J. J. Gooding, “Functionalised porous silicon as a biosensor: Emphasis on monitoring cells in vivo and in vitro,” Analyst. 2013, doi: 10.1039/c3an00081h.
  • R. J. Martin-Palma, “Biomedical applications of nanostructured porous silicon: a review,” J. Nanophotonics, 2010, doi: 10.1117/1.3496303.
  • S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends in Biotechnology. 2016, doi: 10.1016/j.tibtech.2015.09.012.
  • H. Bai, N. Cochet, A. Pauss, and E. Lamy, “Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media,” Colloids Surfaces B Biointerfaces, 2016, doi: 10.1016/j.colsurfb.2015.12.016.
  • S. B. T. De-Leon, R. Oren, M. E. Spira, N. Korbakov, S. Yitzchaik, and A. Sa’ar, “Porous silicon substrates for neurons culturing and bio-photonic sensing,” in Physica Status Solidi (A) Applications and Materials Science, 2005, doi: 10.1002/pssa.200461136.
  • E. Punzón-Quijorna et al., “Nanostructured porous silicon micropatterns as a tool for substrate-conditioned cell research,” Nanoscale Res. Lett., 2012, doi: 10.1186/1556-276X-7-396.
  • A. T. Poortinga, R. Bos, and H. J. Busscher, “Lack of effect of an externally applied electric field on bacterial adhesion to glass,” Colloids Surfaces B Biointerfaces, 2001, doi: 10.1016/S0927-7765(00)00184-3.
  • N. Massad-Ivanir et al., “Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry,” Sci. Rep., 2016, doi: 10.1038/srep38099.
  • N. Pal, S. Sharma, and S. Gupta, “Sensitive and rapid detection of pathogenic bacteria in small volumes using impedance spectroscopy technique,” Biosens. Bioelectron., 2016, doi: 10.1016/j.bios.2015.09.037.
  • A. Bogomolova et al., “Challenges of electrochemical impedance spectroscopy in protein biosensing,” Anal. Chem., 2009, doi: 10.1021/ac9002358.
  • H. J. Schütt and E. Gerdes, “Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response,” J. Non. Cryst. Solids, 1992, doi: 10.1016/S0022-3093(05)80377-1.
  • R. D. Das, C. RoyChaudhuri, S. Maji, S. Das, and H. Saha, “Macroporous silicon based simple and efficient trapping platform for electrical detection of Salmonella typhimurium pathogens,” Biosens. Bioelectron., 2009, doi: 10.1016/j.bios.2009.04.014.
  • R. D. Das, A. Dey, S. Das, and C. Roychaudhuri, “Interdigitated electrode-less high-performance macroporous silicon structure as impedance biosensor for bacteria detection,” IEEE Sens. J., 2011, doi: 10.1109/JSEN.2010.2087746.
  • R. D. Das, N. Mondal, S. Das, and C. Roychaudhuri, “Optimized electrode geometry for an improved impedance based macroporous silicon bacteria detector,” IEEE Sens. J., 2012, doi: 10.1109/JSEN.2011.2175724.
  • P. B. Lillehoj, C. W. Kaplan, J. He, W. Shi, and C. M. Ho, “Rapid, Electrical Impedance Detection of Bacterial Pathogens Using Immobilized Antimicrobial Peptides,” J. Lab. Autom., 2014, doi: 10.1177/2211068213495207.
  • K. Samantaray, S. R. Mishra, G. Purohit, and P. S. Mohanty, “AC Electric Field Mediated Assembly of Bacterial Tetrads,” ACS Omega, 2020, doi: 10.1021/acsomega.9b04124.
  • S. Pudasaini, A. T. K. Perera, S. S. U. Ahmed, Y. B. Chong, S. H. Ng, and C. Yang, “An electroporation device with microbead-enhanced electric field for bacterial inactivation,” Inventions, 2020, doi: 10.3390/inventions5010002.
  • B. Jiang et al., “Impacts of long-term electric field applied on the membrane fouling mitigation and shifts of microbial communities in EMBR for treating phenol wastewater,” Sci. Total Environ., 2020, doi: 10.1016/j.scitotenv.2020.137139.
  • T. F. Kong, P. Y. Tan, B. Z. Tay, X. Shen, and Marcos, “Bacteria and cancer cell pearl chain under dielectrophoresis,” Electrophoresis, 2021, doi: 10.1002/elps.202000277.
  • S. Güler, Ç. Oruç, and A. Altındal, “Electric field assisted deposition of E. coli bacteria into the pores of porous silicon,” J. Microbiol. Methods, 2019, doi: 10.1016/j.mimet.2019.04.018.
  • C. Oruc and S. Guler, “Effect of Au, Ag and Cu thin films’ thickness on the electrical parameters of metal-porous silicon direct hydrogen fuel cell,” Int. J. Hydrogen Energy, 2014, doi: 10.1016/j.ijhydene.2014.10.017.
  • Ç. ORUÇ, S. GÜLER, and H. M. LUŞ, “Metal-Gözenekli Silisyum Direk Hidrojen Pili Üretim Parametrelerinin Geliştirilmesi,” Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., 2018, doi: 10.29109/gujsc.383081.
  • M. Merve Yüzüak, S. Altun, A. Altindal, and Z. Odabaş, “Dielectric properties and electronic absorption: A comparison of novel azo- and oxo-bridged phthalocyanines,” Dalt. Trans., 2014, doi: 10.1039/c4dt02998d.
  • F. A. Harraz, “Porous silicon chemical sensors and biosensors: A review,” Sensors Actuators, B Chem., 2014, doi: 10.1016/j.snb.2014.06.048.
  • H. Anany, W. Chen, R. Pelton, and M. W. Griffiths, “Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes,” Appl. Environ. Microbiol., 2011, doi: 10.1128/AEM.05493-11.
  • J. H. Han et al., “Capture and detection of T7 bacteriophages on a nanostructured interface,” ACS Appl. Mater. Interfaces, 2014, doi: 10.1021/am500655r.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi
Sayıdaki Diğer Makaleler

Yarıiletken Aygıt Karakterizasyonu içinArduino UNO Tabanlı Otomatik Hall/DirençÖlçüm Sistem Tasarımı ve Uygulaması

Tayyar Güngör, Ebru Güngör

Yerel Zemin Özelliklerinin Microtremor ve ÇKYD Yöntemlerinden Elde Edilen Parametreler Kullanılarak İrdelenmesi: Eğridere/İzmir Örneği

Aykut Tunçel

İzmir Menemen Bölgesinin Güneş Işınım Tahmini için Angström-Prescott Modeli Temelli Yaklaşımların Değerlendirilmesi

Hatice Başak Yıldırım

Görüntüleme Sistemleri İçin Kalıcı Mıknatıslarda Optimum Performans İncelemesi

Ayhan Bingolbali, Furkan Balcı, Nurcan Doğan

Potansiyel Antifungal Ajanlar Olarak Yeni Benzotiyazol-Ditiyokarbamat Türevlerinin Sentezi ve Karakterizasyonu

Begüm Nurpelin Sağlık, Derya Osmaniye

Negatif elektrik yükü taşıyan E. faecalis bakterilerinin elektrik alan etkisi ile farklı gözenekli boyutlarda üretilen GS/Si yapılara yaklaştırılması sonucu iletkenlik ve kapasitans değişimleri

Sevinç Güler, Çiğdem Oruç

Doğal Potansiyel Verilerinin İkinci Ve Dördüncü Mertebeden Türev Analizi Kullanilarak Değerlendirilmesi

Coşkun Sarı, Arian Dadashi

WGM2012 Bouguer gravite verileriyle Marmara Bölgesi'nde sığ kabuk yapısı araştırması

Ali ELMAS

Aşağı ve Yukarı Yönlü NOMA Haberleşme Sistemleri için CNN Yardımlı Alternatif Sezici Tasarımı

Hakan Kaya, Ferdi Kara, Ahmet Emir

PM10 Parametresinin Makine Öğrenmesi Algoritmalari ile Mekânsal Analizi, Kayseri İli Örneği

Öznur Begüm Gökçek, Aslı Bozdağ, Yeşim Dokuz, Nuray Şaşa