JEOTERMAL KAYNAKLI ARSENİĞİN YERALTISUYU VE YÜZEYSELSULARDAKİ JEOKİMYASAL DAVRANIŞI: BİRLİKTE ÇÖKELME, ADSORBSİYON, pH-Eh

Jeotermal sistemlerden kaynaklanan arsenik kirliliğinin yüzeyselsu ve yeraltısularında açığa çıkması, bu suların içme ve sulama amaçlı kullanımlarını riske sokmaktadır. Bu sulardaki, arsenik kirliliği sucul ekosistemleri de etkilemektedir. Çalışmada, Balçova (İzmir) ve Gediz Ilıca (Kütahya) jeotermal alanlarından  arseniğin, yüzeyselsu ve yeraltısularında taşınım ve türleri, depolanması ve giderim mekanizmaları incelenmektedir. Sularda, Phreeqc yazılımı ile türleştirme, çözünme/çökelme ve soğuk sular ile karışım dikkate alınmak suretiyle modellemeler yapılmıştır. Çalışmanın sonuçlarına göre, arsenik derişimlerinin mineral çökelimleri, adsorbsiyon, redoks (Eh) ve pH tarafından kontrol edilmekte olduğu saptanmıştır. Adsorpsiyon genellikle yeraltısularındaki arseniği kontrol eden ana proses iken, yüzeyselsularda yüksek arsenik derişimlerinin bulunması herhangi bir tepkisel taşınıma uğramadığını göstermektedir.  

GEOCHEMICAL BEHAVIOUR OF ARSENIC FROM GEOTHERMAL RESOURCES IN GROUNDWATER AND SURFACE WATER: COPRECIPITATION, ADSORPTION, pH-Eh

The release of arsenic (As) from geothermal systems into surface waters and groundwaters compromises the use of these waters as drinking and irrigation water resources. In these waters, arsenic contamination can also affect aquatic ecosystems. This study examines the release of arsenic in Balçova (Izmir) and Gediz Ilıca (Kütahya) geothermal areas, its transport and speciation of As in the receiving waters, as well as the deposition and removal mechanisms occurring in the both natural environments. The systems are modeled using the Phreeqc code, taking into account aqueous speciation, dissolution/precipitation as well as , mixing with cold waters. The results of this study suggest that the partitioning is controlled by several processes including mineral precipitation, adsorption, pH and oxido-reduction. Adsorption is often the main process controlling the fate of As in the groundwater whereas in surface waters high As concentrations are due to its nonreactive behavior.

___

  • Aksoy N. (2001): “Balçova-Narlıdere Jeotermal Sahasının Doğal ve Yapay İzleyicilerle İncelenmesi”, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir (Doktora Tezi).
  • Aksoy N. (2005): “Balçova-Narlıdere Jeotermal Sahası Rezervuar Gözlemleri: 2000-2005”, Türk Tesisat Kongresi, TESKON–2005, Jeotermal Seminer Kitabı, s. 227-246, 23-26 Kasım, 2005.
  • Aksoy N., Şimşek C., Gündüz O. (2008): “Groundwater Contamination Mechanism in a Geothermal Field: a Case Study of Balçova, Turkey”, Journal of Contaminant Hydrology: DOİ:10.1016/jconhyd.2008.08.06.
  • Alexandratos V. G., Elzinga E. J., Reeder R. J. (2007): “Arsenate Uptake by Calcite: Macroscopic and Spectroscopic Characterization of Adsorption and Incorporation Mechanisms”, Geochim. Cosmochim. Acta, Cilt 71, s.4172-4187.
  • Allison J. D., Brown D. S., Novo-Gradac K. J. (1991): “MINTEQA2/PRODEFA2: A Geochemical Assessment Model for Environmental Systems”, Version 3.0 user's manual: U.S. Environmental Protection Agency, s.106.
  • Appelo C. A. J., Postma D. (2005): Geochemistry, Groundwater and Pollution”, 2nd. edition A.A. Balkema, Amsterdam, s.649.
  • Arık V. E. (2005): “Narlıdere (İzmir) Kıyı Kesiminin Hidrojeolojisi”, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, İzmir.
  • Ball J. W., Nordstrom D. K. (1991): “User’s Manual for WATEQ4F, with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Waters”, U.S. Geological Survey Open-File Report, s.91- 183.
  • Burçak M., Sevim F., Hacısalihoğlu Ö. (2007): “Discovering a New Buried Geothermal Field which Have Been Found out Using Geological-Geophysical and Geoghemical Methods in Uçbas-Saphane, Kutahya Western Anatolia, Turkey”, Thirty-Second Workshop on Geothermal Reservoir Engineering proceedings Stanford University, Stanford, California, January 22-24, SGP-TR-183.
  • Buschmann J., Berg M., Stengel C., Winkel L., Sampson M. L., Trang P. T. K., Viet P. H., (2008): “Contamination of Drinking Water Resources in the Mekong Delta Floodplains: Arsenic and Other Trace Metals Pose Serious Health Risks to Population”, Environ. Internat. Cilt 34, s.756–764.
  • De Carlo E. H., Thomas D. M., (1985); Removal of Arsenic from Geothermal Fluids by Adsorptive Bubble Flotation with Colloidal Ferric Hydroxide”, Environmental Science and Technology, Cilt 19, s.538-544.
  • Doğdu M. S., Bayari C. S. (2005): “Environmental Impact of Geothermal Fluids on surface Water, Groundwater and Streambed Sediments in the Akarcay Basin, Turkey”. Environmental Geology, Cilt 47, No. 3, s.325-340.
  • Gemici Ü., Tarcan G. (2002): “Distribution of Boron in Thermal Waters of Western Anatolia, Turkey and Examples on Their Environmental Impacts”, Environmental Geology, Cilt 43, s.87-98.
  • Gemici Ü., Tarcan G. (2004): “Hydrogeological and Hydrogeochemical Features of the Heybeli Spa, Afyon, Turkey: Arsenic and the Other Contaminants in the Thermal Waters”, Bulletin of Environmental Contamination and Toxicology. Cilt 72, No. 6, s.1107-1114.
  • Gemici Ü., Tarcan G., Çolak M. Helvacı C. (2004): “Hydrogeochemical and Hydrogeological Investigations for Thermal Waters in Emet Area (Kütahya-Turkey)”, Applied Geochemistry, Cilt 19, s.105-117.
  • Gustafsson J. P., Bhattacharya P. (2007): “Geochemical Modelling of Arsenic Adsorbtion to Oxide Surface”, (Ed.: J.O. Nriagu, P. Bhattacharya, A.B. Mukherjee, J. Bundschuh, R. Zevenhoven and R.H. Loeppert), Arsenic in Soil and Groundwater Environment: Biogeochemical Interactions, Health Effects and Remediation, Trace Metals and Other Contaminants in the Environment, Cil 9, Elsevier B. V., Amsterdam, Hollanda, s. 159-206 10.1016/S0927-5215(06)09001-1.
  • Güneş C. (2006): “Gediz Kaplıcaları’nın (Kütahya) Hidrojeolojik ve Hidrojeokimyasal Değerlendirilmesi”, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Le Guern C., Baranger P., Crouzet C., Bodenan F., Conil P. (2003): “Arsenic Trapping by Iron Oxyhydroxides and Carbonates at Hydrothermal Spring Outlets”, Applied Geochemistry, Cilt 18, s.1313-1323.
  • Le Guern C., Conil P., Baranger P. (2007): “Dynamics of Arsenic at Hydrothermal Spring Outlets: Role of Fe Oxyhydroxides and Carbonates”, (Ed.: J. O. Nriagu, P. Bhattacharya, A. B. Mukherjee, J. Bundschuh, R. Zevenhoven and R. H. Loeppert), Arsenic in Soil and Groundwater Environment: Biogeochemical Interactions, Health Effects and Remediation, Trace Metals and Other Contaminants in the Environment, Cilt 9, Elsevier B. V., Amsterdam, Hollanda, s. 501-523 10.1016/S0927-5215(06)09001-1.
  • Lin Z., Puls R. W. (2000); “Adsorption, Desorption and Oxidation of Arsenic Affected by Clay Minerals and Aging Process”, Environ. Geol., Cilt 39, s.753-759.
  • Merkel B. J., Planer-Friedrich B. (2008): “Groundwater Geochemistry: A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems”, (Ed.: Darrell Kirk), Nordstrom 2nd Edition, Springer-Verlag Berlin Heidelberg, s. 230.
  • Mkandawire M., Dudel E. G. (2005): ”Accumulation of Arsenic in Lemna Gibba L. (duckweed) in Tailing Waters of Two Abandoned Uranium Mining Sites in Saxony, Germany”, Sci. Total Environ., Cilt 336, s. 81-89.
  • National Research Council (1999): “Arsenic in Drinking Water: Washington”, DC, National Academy Press, s.310.
  • Nicolli H. B., Suriano J. M., Peral M. A. G., Ferpozzi L. H., Baleani O. A.,(1989): “Groundwater Contamination with Arsenic and Other Trace-Elements in an Area of the Pampa, Province of Cordoba, Argentina”, Environmental Geology and Water Sciences, Cilt 14, No. 1, s.3-16.
  • Nriagu J. O., Bhattacharya P., Mukherjee A. B., Bundschuh J., Zevenhoven R., Loeppert R. H. (2007): “Arsenic in Soil and Groundwater: an Overview”, (Ed.: P. Bhattacharya, A. B. Mukherjee, J. Bundschuh, R. Zevenhoven and R. H. Loepper)t, Arsenic in Soil and Groundwater Environment: Biogeochemical Interactions, Health Effects and Remediation, Trace Metals and Other Contaminants in the Environment, Cilt 9, Elsevier B. V., Amsterdam, Hollanda, s.3–60 10.1016/S0927-5215(06)09001-1.
  • Özer, Z., (2005): “Balçova (İzmir) Kıyı Kesiminin Hidrojeolojisi” Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü (Yüksek Lisans Tezi), İzmir.
  • Özgür N. (2001): “Origin of the High Boron Contents in the Thermal Waters of the Rift Zones of the Menderes Massif, Western Anatolia, Turkey”, International Geology Review Cilt 43, s.910-920.
  • Parkhurst D. L., Appelo C. A. J. (1999): “User’s Guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations”.
  • Prohaska T., Stingeder G. (2005): “Speciation of Arsenic”, in Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine and Occupational Health (Ed.: R. Cornelis, H. Crews, J. Caruso and K. G. Heumann), John Wiley and Sons, ISBN: 0- 470-85598-3 Chichester, İngiltere, s. 69-85.
  • Sancha A. M. (1999): “Full-Scale Application of Coagulation Processes for Arsenic Removal in Chile: A Successful Case Study”, Arsenic Exposure and Health Effects, s.373-378.
  • Smedley P. L., Kinniburgh D. G. (2002): “A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters”, Appl. Geochem., Cilt 17, s.517-568.
  • Smedley P. L., Kinniburgh D. G., Huq I., Luo Z., Nicolli H. B. (2001): “International Perspective on Naturally Occurring Arsenic Problems in Groundwater”, (Ed.:: W. R. Chappell, C. O. Abernathy, R. L. Calderon), Arsenic Exposure and Health Effects IV. Elsevier, Amsterdam, s.9-25.
  • Stollenwerk K. G. (2003): “Geochemical Processes Controlling Transport of Arsenic in Groundwater: A Review of Adsorption”, (Ed.: A. H. Welch, K. G. Stollenwerk), Arsenic in Ground Water: Geochemistry and Occurrence. Kluwer Academic Publishers, Boston, MA, s. 67-100.
  • Şimşek C. (2005): “Balçova Jeotermal Sahasında Bor ve Arsenik Kirliliği”, Türk Tesisat Kongresi, TESKON–2005, Jeotermal Seminer Kitabı, 23–26 Kasım, s. 361–368.
  • Tarcan G., Gemici Ü., Aksoy N. (2005): “Hydrogeological and Geochemical Assessments of the Gediz Graben Geothermal Areas, Western Anatolia, Turkey”, Environmental Geology, Cilt 47, s.523-534.
  • U. S. Environmental Protection Agency (USEPA) (2001): “Rules and Regulations”, Federal Register. Cilt 66, No. 14, U.S. Government Printing Office, Washington, DC.
  • Visoottiviseth P., Francesconi K., Sridokchan W. (2002): “The Potential of Thai Indigenous Plant Species for the Phytoremediation of Arsenic Contaminated Land”, Environ. Pollut. Cilt 118, s.453-461.
  • Wang S., Mulligan C. N. (2006): “Natural Attenuation Processes for Remediation of Arsenic Contaminated Soils and Groundwater”, Journal of Hazardous Materials, Cilt B138, s.459- 470.
  • Waring J., Maher W. (2005): “Arsenic Bioaccumulation and Species in Marine Polychaeta”, Appl. Organometal. Chem., Cilt 19, s.917-929.
  • Webster J. G., Nordstrom D. K. (2003): “Geothermal Arsenic”, (Ed.: A. H. Welch, K. G. Stollenwerk), Arsenic in Ground Water: Geochemistry and Occurrence, Kluwer Academic Publishers: Londra, s.101-125.
  • Webster J. G. (1999): “The Source of Arsenic (& other elements) in the Marbel-Matingao River Catchment”, Mindanao, Philippines: Geothermics, Cilt 28, s.95-111.
  • WHO (1993): “Guidelines for Drinking-Water Quality”, Volume 1: Recommendations”, 2nd ed. WHO, Geneva.
  • Wolery T. J. (1992): “EQ3/6, A Software Package for Geochemical Modeling of Aqueous Systems”, UCRL-MA-110662 Pts I-III, Lawrence Livermore Nat. Lab., Cal.