İtfaiye Hortumunun Alternatif Yöntemlerle Kurutulması ve Uygun Kurutucu Seçimi

Bu çalışmada amaç, hortumların yıpranmasının geciktirilmesi ve içlerindeki suyun kurutularak, hortumların ağırlığını azaltmak ve bu sayede olay esnasında en hızlı kullanımın sağlanması için belirlenmiş tekniklerden olan serme toplama yöntemlerine göre hortumların depolanabilmesidir. Mevcut durumda kurutma işlemi için kullanılan doğal kurutma özellikle hava şartlarından çabuk etkilendiği ve yavaş olduğu için alternatif yöntemlere ihtiyaç duyulmaktadır. Bu çalışma ile enerjiden ve zamandan tasarruf ederek verimsiz çalışma saatlerinde de azalmaya gidilmesi hedeflenmiştir. Kurutma öncesi gerçek koşulları dikkate alarak 30, 60 ve 90 dakika boyunca yangın hortumuna su emmesi uygulanmıştır. Denemeler mikrodalga kurutucuda 120 W, 350 W ve 460 W güç değerlerinde ve bantlı tip tünel kurutucularda ise 50 ⁰C, 60 ⁰C ve 70 ⁰C sıcaklık değerlerinde gerçekleştirilmiştir. Elde edilen sonuçlara göre nem analizi, mukavemet analizi, kuruma hızı, enerji tüketim, difüzyon katsayısı ve aktivasyon enerjisi hesaplamaları yapılmıştır. En az enerji tüketimi ve en kısa sürede kurutma 460 W güç değerinde mikrodalga kurutucu ile yapılan deneyde görülmüştür. Deneylere ait tüm sonuçlar değerlendirildiğinde iki tip kurutmanın da mekanizmaları farklı olduğu için farklı kuruma süreleri ile farklı enerji tüketimleri gözlendiği ancak genel sonuç olarak mikrodalga kurutmanın bantlı tip kurutmaya göre daha verimli gerçekleştiği görülmüştür.

Drying Of Fire Hose With Alternative Methods And Selection Of Optimal Dryer

The aim here is to delay the wearing of hoses and in order to store them and use them in the most efficient way that laying-rallying hoses are dried by decreasing their weight. With this study the objective is decreasing inefficient working hours while saving energy and time. Considering real world conditions, drying hoses are subjected to water absorption for 30, 60 and 90 minutes. Trials are executed in a microwave dryer at 120 W, 350 W and 460 W settings and in a conveyor dryer at temperatures 50 °C, 60 °C and 70 °C. Moisture analysis, strength analysis, drying rate, energy consumption, diffusion coefficient and activation energy calculations were made according to the results obtained. It has been observed that minimum consumption of energy and fastest drying occurred with the power level of 460 W in the microwave dryer. When all of the results are evaluated according to trials, it has been noted that since the mechanisms behind the two dryer systems are not similar and drying times and consumption of energies are different, the microwave dryer is more efficient than the conveyor dryer type.

___

  • Dağlı, M., Çelen, S. 2020. Investigation of the drying model of type B hose, 2nd International African Conference On Current Studies, October 17-18, Abuja, NIGERIA.
  • Bursa Metropolitian Municipality, Department of Fire Brigade, 2016. In-Service Training Textbook, Bursa, Turkey, http://itfaiye.bursa.bel.tr/wp-content/uploads/2011/11/Ders-kitabi-filigranli-2.pdf (Accessed: 18.02.2020).
  • Istanbul Metropolitian Municipality, Department of Fire Brigade, 2014. Firefighting Equipments, Istanbul, Turkey, http://itfaiye.ibb.gov.tr/img/111819432020__47571064.pdf (Accessed: 18.02.2020).
  • Dağlı, M., Çelen, S., Moralar, A. 2020. p 71-88. Internal structure and thermal analysis of fire fighting hose, Civi, C, Yılmaz, T, ed. 2020. Engineering and architecture sciences theory, current researches and new trends, Chapter VII, IVPE Publihing, Montenegro.
  • Izmir Metropolitian Municipality, Department of Fire Brigade, 2015. Fire Fighting Equipment and Product Information, Izmir, Turkey, http://itfaiye.izmir.bel.tr/yangin.pdf, (Accessed: 18.02.2020).
  • Dağlı M. Çelen S. 2020. Investigation of surface temperature in fire hose drying. p. 153-174. Civi, C., Yılmaz, T., ed. 2020. Engineering and architecture sciences theory, current researches and new trends, Chapter VI, IVPE Publihing, Montenegro.
  • Dağlı M. 2020. Drying Parameters Of The Fire Hose And Selection Of Appropriate Dryer. Tekirdağ Namık Kemal University, Master’s Thesis, 162s, Tekirdağ.
  • Çelen, S., Aktas, T., Karabeyooglu, S.S. Akyildiz, A. 2015. Drying behaviour of prina (Crude olive cake) using different type of dryers. Drying Technology, 12: 21–31. DOI: 10.1080/07373937.2015.1044009.
  • Köse Tınmaz, E., Çelen, S., Çelik, S.Ö. 2019. Conventional and microwave drying of hydrocarbon cutting sludge. Environmental Progress Sustainable Energy, 38(4): 1- 7. DOI: 10.1002/ep.13104.
  • Çelen, S., Arda, S.O., Karataşer, M.A., 2018. Modeling of drying behavior using microwave conveyor dryer assisted solar energy. El-Cezeri Journal of Science and Engineering, 5 (1): 267-271. DOI: 10.31202/ecjse.357260.
  • Vahapoğlu, V. 2013. Experiment which is done in rubber mechanics. Pamukkale University Journal of Engineering Sciences, 19 (1): 33-60. DOI: 10.5505/pajes.2013.10820.
  • Babalık, F.C., Çavdar, K. 2012. Strength Calculation In Machine Elements. 5th, edition. Machine Elements And Construction Examples. Dora Publishing, Bursa, 844s.
  • Madhiyanon, T., Phila, A., Soponronnarit, S. 2009. Models of fluidized bed drying for thin-layer chopped coconut. Applied thermal engineering, 29: 2849-2854. DOI: 10.1016/j.applthermaleng.2009.02.003.
  • Çelen, S., Haksever, A., Moralar, A. 2017. The Effect of Microwave Energy to the Drying of Apple (Gala) Slices, Karaelmas Science and Engineering Journal, 7 (1): 228-236.
  • Doymaz, İ., Aktaş, C. 2018. Determination of drying and rehydration characteristics of eggplant slices. Journal of the faculty of engineering and architecture of Gazi University, (3): 833-841. DOI: 10.17341/gazimmfd.416386.
  • Çelen, S., Aktaş, T., Karabeyoğlu, S.S, Akyıldız, A. 2015. Drying Of Prina Using Microwave Energy And Determination Of Appropriate Thin Layer Drying Model. Journal Of Tekirdag Agricultural Faculty, 12 (2): 21-31.
  • Çelen, S. 2019. Effect of microwave drying on the drying characteristics, color, microstructure, and thermal properties of Trabzon Persimmon. Foods, 8 (84): 1-19. DOI: 10.3390/foods8020084.
  • Darvishi, H. 2017. Quality, performance analysis, mass transfer parameters and modeling of drying kinetics of soybean, Brazilian Journal of Chemical Engineering, 34(1):143-158. DOI: 10.1590/0104-6632.20170341s20150509.
  • Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., Darvishi, H. 2016. Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer. Journal of the Saudi Society of Agricultural Sciences, (2): 179-187. DOI: 10.1016/j.jssas.2014.11.003.
  • Meisami-Asl, E., Rafiee, S., Keyhani, A., Tabatabaeefar, A. 2010. Drying of apple slices (var. Golab) and effect on moisture diffusivity and activation energy. Plant Omics Journal, (3): 97-102.
  • Doymaz, I. 2012. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy Conversion and Management, 56: 199–205. DOI: 10.1016/j.enconman.2011.11.027.
  • Chahbani, A., Fakhfakh, N., Balti, M.A., Mabrouk, M., El-Hatmi, H., Zouari, N., Kechaou, N. 2018. Microwave drying effects on drying kinetics, bioactive compounds and antioxidant activity of green peas (Pisum sativum L.). Food Bioscience, 25: 32–38. DOI: 10.1016/j.fbio.2018.07.004.
  • Hanif, M., Khattak, M.K., Rehman, M.U., Ramzan, M., Amin, M., Aamir, M., Sheikh, S.S., Hafizullah, Khan S., Saeed, M., Khan, A., Saqlain, M. 2015. Effect of Drying Temperature and Natural Preservatives on Reducing Aflatoxins in Solar Dried Persimmon (Diospyros kaki L). Proceedings of the Pakistan Academy of Sciences. 52: 359-363.
  • Shalini, Singh, J., Samsher, Chandra, S., Kumar, V., Chauhan, N, Yadav, M.K. 2017. Effect of moisture content and drying rate on dried aonla shreds during ambient storage, International Journal of Chemical Studies, 5(4): 362-366.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi