2B ve 3B Yorumlama Teknikleriyle Tuz Gölü’nün Güneybatısında Toplanmış Gravite Verilerinin İncelenmesi

Gravite yöntemi, çökel havzaların araştırılmasında sıklıkla başvurulan yöntemlerdendir. Bu çalışmada, Tuz Gölü havzasının güneybatısında toplanmış gravite verileri 3B Euler dekonvolüsyonu, 2B yapısal modelleme ve çeşitli 3B modelleme işleçleri kullanılarak incelenmiştir. 3B Euler dekonvolüsyonunun, bölgede bulunan fay ve çizgisellikleri yansıttığı gözlenmiştir. SI=0 için elde edilen nokta kaynak derinliklerinin, genel olarak fay derinlikleri ile tutarlı olduğu gözlenmiştir. 2B yapısal modellemede havzanın yoğunluk karşıtlığının ortalama dρ=-0.6 g/cm3 kabul edilmesiyle, bilinen jeolojiyle uyumlu sonuçlar elde edilmiştir. Gravite verilerinden, düzgünleştiricili 3B ters çözüm ile elde edilen modellerin yanal sınırları belirlemede başarılı olduğu, ancak fayların dalımlarını ve havza derinliğini doğru biçimde belirlemede yetersiz olduğu bilinmektedir. 3B ters çözüm sonucu elde edilen modellerde de bu sorunlar gözlenmiştir. Bu nedenle veriler, geleneksel olmayan 3B modelleme yöntemleri ile de değerlendirilmiştir. Bu yöntemlerin, önceki jeofizik çalışmalarla ve bölge jeolojisiyle daha uygun sonuçlar sağlayabildiği gözlenmiştir. Belirsizlik analizleri, yapı sınırlarında belirsizliğin arttığını, ancak havza içerisinde belirsizliğin görece az seviyede olduğunu göstermiştir. Bu, kullanılan yuvarlatıcı fonksiyonların elde edilen modellerdeki çok çözümlülüğü önemli ölçüde azalttığını işaret etmektedir.

Investigation of Gravity Data Collected in the Southwest of Tuz Lake Using 2D and 3D Interpretation Methods

Gravity method is implemented often for the investigation of sedimentary basins. In this study, the gravity data, collected in the southwest of the Tuz Lake basin are investigated using 3D Euler deconvolution, 2D structural modeling and several 3D modeling algorithms. The 3D Euler deconvolution results are observed to be reflecting the faults and lineations in the area. The point source depths for SI=0 are determined to be generally consistent with the fault depths. In the 2D structural modeling studies, results, coherent with the known geology, are obtained by assuming mean density contrast of the basin dρ=-0.6 g/cm3. The modeling results obtained from 3D regularized inversions are known to be successfully showing horizontal boundaries, while generally unable to solve basin depths and fault dips correctly. For these reasons, the dataset is also evaluated using nonconventional 3Dmodeling methods. These methods are observed to be able to provide results, which are more coherent with the previous geophysical studies and the geology of the area. Uncertainty analysis suggests higher uncertainty at the structure boundaries; however, relatively lower uncertainty levels are observed in the basin. This result implies that the applied smoothing functions significantly decrease the non-uniqueness of the recovered models.

___

  • Arikan, Y., 1975. Tuz Golu havzasinin jeolojisi ve petrol imkanlari. MTA Bull, Cilt. 85, 17-38.
  • Cemen, I., Göncüoglu, M. C., & Dirik, K., 1999. Structural evolution of the Tuzgölü basin in Central Anatolia, Turkey. The Journal of Geology, Cilt. 107(6), 693-706. DOI: 10.1086/314379
  • Aydemir, A., & Ates, A., 2006. Structural interpretation of the Tuzgolu and Haymana Basins, Central Anatolia, Turkey, using seismic, gravity and aeromagnetic data. Earth, planets and space, Cilt. 58(8), 951-961. DOI: 10.1186/BF03352600
  • Fernandez-Blanco, D., Bertotti, G., & Çiner, A., 2013. Cenozoic tectonics of the Tuz Gölü basin (central Anatolia plateau, Turkey). Turkish Journal of Earth Sciences, Cilt. 22(5), 715-738. DOI: 10.3906/yer-1206-7
  • Özsayın, E., Çiner, A., Rojay, B., Dirik, K., Melnick, D., Fernandez-Blanco, D., Bertotti, G., Schildgen, T.F., Garcin, Y., Strecker, M.R. & Sudo, M., 2013. Plio-Quaternary extensional tectonics of the Central Anatolian Plateau: a case study from the Tuz Gölü Basin, Turkey. Turkish Journal of Earth Sciences, Cilt. 22(5), 691-714. DOI: 10.3906/yer-1210-5
  • Uğurtaş, G., 1975. Tuz Gölü havzasinin bir bölümünün jeofizik yorumu. MTA Dergisi, Cilt. 85, 38-44.
  • Barbosa, V. C. F., Silva, J. B., & Medeiros, W. E., 1997. Gravity inversion of basement relief using approximate equality constraints on depths. Geophysics, Cilt. 62(6), 1745-1757. DOI: 10.1190/1.1444275
  • Rao, D. B., 1986. Modelling of sedimentary basins from gravity anomalies with variable density contrast. Geophysical Journal International, Cilt. 84(1), 207-212.
  • Silva, J. B., Costa, D. C., & Barbosa, V. C., 2006. Gravity inversion of basement relief and estimation of density contrast variation with depth. Geophysics, Cilt. 71(5), J51-J58.
  • Bal, O. T., & Kara, I., 2012. 3-D Gravity modeling of basins with vertical prisms: Application to Salt Lake region (Turkey). Journal of the Balkan Geophysical Society, Cilt. 15(1), 1-6.
  • Boulanger, O., & Chouteau, M., 2001. Constraints in 3D gravity inversion. Geophysical prospecting, Cilt. 49(2), 265-280. DOI: 10.1046/j.1365-2478.2001.00254.x
  • Li, Y., & Oldenburg, D. W., 1998. 3-D inversion of gravity data. Geophysics, 63(1), 109-119.DOI: 10.1190/1.1444302
  • Portniaguine, O., & Zhdanov, M. S., 1999. Focusing geophysical inversion images. Geophysics, Cilt. 64(3), 874-887.
  • Akça, I., & Basokur, A. T., 2010. Extraction of structure-based geoelectric models by hybrid genetic algorithms. Geophysics, Cilt. 75(1), F15-F22. DOI: 10.1190/1.3273851
  • Karcıoğlu, G., & Gürer, A., 2019. Implementation and model uniqueness of Particle Swarm Optimization method with a 2D smooth modeling approach for Radio-Magnetotelluric data. Journal of Applied Geophysics, Cilt. 169, 37-48. DOI: 10.1016/j.jappgeo.2019.06.001
  • Pekşen, E., Yas, T., Kayman, A. Y., & Özkan, C., 2011. Application of particle swarm optimization on self-potential data. Journal of Applied Geophysics, Cilt. 75(2), 305-318.DOI: 10.1016/j.jappgeo.2011.07.013
  • Berrino, G., & Camacho, A. G., 2008. 3D gravity inversion by growing bodies and shaping layers at Mt. Vesuvius (Southern Italy). Pure and Applied Geophysics, Cilt. 165(6), 1095-1115. DOI: 10.1007/s00024-008-0348-2
  • Karcıoğlu G., B. Tekkeli A., Tarhan Bal O., 2018. Smooth 3D Modeling of Gravity Data Using Particle Swarm Optimization, New Trends in Geophysics and Engineering 2018, 7-9 Kasım 2018, İstanbul, Türkiye, pp.1-4
  • Montesinos, F. G., Arnoso, J., & Vieira, R., 2005. Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands). International Journal of Earth Sciences, Cilt. 94(2), 301-316. DOI: 10.1007/s00531-005-0471-6
  • Montesinos, F. G., Arnoso, J., Benavent, M., & Vieira, R., 2006. The crustal structure of El Hierro (Canary Islands) from 3-D gravity inversion. Journal of Volcanology and Geothermal Research, Cilt. 150(1-3), 283-299. DOI: 10.1016/j.jvolgeores.2005.07.018
  • Pallero, J. L. G., Fernandez-Martinez, J. L., Bonvalot, S., & Fudym, O., 2015. Gravity inversion and uncertainty assessment of basement relief via particle swarm optimization. Journal of Applied Geophysics, Cilt. 116, 180-191. DOI: 10.1016/j.jappgeo.2015.03.008
  • Ekinci, Y. L., Balkaya, Ç., Göktürkler, G., & Özyalın, Ş., 2021. Gravity data inversion for the basement relief delineation through global optimization: a case study from the Aegean Graben System, western Anatolia, Turkey. Geophysical Journal International, Cilt. 224(2), 923-944.
  • Camacho, A. G., Fernández, J., & Gottsmann, J., 2011. The 3-D gravity inversion package GROWTH2. 0 and its application to Tenerife Island, Spain. Computers & geosciences, Cilt. 37(4), 621-633. DOI: 10.1016/j.cageo.2010.12.003
  • Reid, A. B., Ebbing, J., Webb, S. J., 2014. Avoidable Euler errors-the use and abuse of Euler deconvolution applied to potential fields. Geophysical Prospecting, Cilt. 62(5), 1162-1168. DOI: 10.1111/1365-2478.12119
  • Tedla, G. E., Van Der Meijde, M., Nyblade, A. A., & Van der Meer, F. D., 2011. A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution. Geophysical Journal International, Cilt. 187(1), 1-9. DOI: 10.1111/j.1365-246X.2011.05140.x
  • van der Meijde, M., & Nyblade, A. A., 2014. Reply to “Comment on ‘A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution”’. Geophysical journal international, Cilt. 196(1), 96-99. DOI: 10.1093/gji/ggt450
  • Won, I. J., & Bevis, M., 1987. Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines. Geophysics, Cilt. 52(2), 232-238. DOI: 10.1190/1.1442298
  • Li, X., & Chouteau, M., 1998. Three-dimensional gravity modeling in all space. Surveys in Geophysics, Cilt. 19(4), 339-368. DOI: 10.1023/A:1006554408567
  • Cella, F., Fedi, M., Florio, G., Grimaldi, M., & Rapolla, A., 2007. Shallow structure of the Somma-Vesuvius volcano from 3D inversion of gravity data. Journal of volcanology and geothermal research, Cilt. 161(4), 303-317. DOI: 10.1016/j.jvolgeores.2006.12.013
  • Dutra, A. C., & Marangoni, Y. R., 2009. Gravity and magnetic 3D inversion of Morro do Engenho complex, Central Brazil. Journal of South American Earth Sciences, Cilt. 28(2), 193-203. DOI: 10.1016/j.jsames.2009.02.006
  • Khalil, M. A., Santos, F. M., & Farzamian, M., 2014. 3D gravity inversion and Euler deconvolution to delineate the hydro-tectonic regime in El-Arish area, northern Sinai Peninsula. Journal of applied Geophysics, Cilt. 103, 104-113. DOI: 10.1016/j.jappgeo.2014.01.012
  • Witter, J. B., Siler, D. L., Faulds, J. E., & Hinz, N. H., 2016. 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA. Geothermal Energy, Cilt. 4(1), 14.
  • Li, Y., 2001. 3-D inversion of gravity gradiometer data. In: SEG Technical Program Expanded Abstracts 2001. 1470-1473. Society of Exploration Geophysicists. DOI: 10.1190/1.1816383
  • Chasseriau, P., & Chouteau, M., 2003. 3D gravity inversion using a model of parameter covariance. Journal of applied geophysics, Cilt. 52(1), 59-74. DOI: 10.1016/S0926-9851(02)00240-9
  • Clerc, M. and Kennedy, J., 2002. The particle swarm–explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, Cilt. 6(1), 58–73. DOI: 10.1109/4235.985692
  • Li, X., Yao, X., 2011. Cooperatively Coevolving Particle Swarms for large Scale Optimization. IEEE Trans. Evol. Comput. 16 (2), 210–224.
  • Aydemir, A., & Ateş, A., 2005. Preliminary evaluation of Central Anatolian Basins in Turkey using the gravity and magnetic data. Journal of Balkan Geophysical Society, Cilt. 8(1), 7-19.
  • Gürbüz, A., & Kazancı, N., 2014. Facies characteristics and control mechanisms of Quaternary deposits in the Tuz Gölü basin. Maden Tetkik ve Arama Dergisi, Cilt. 149(149), 1-18. DOI: 10.19111/bmre.63616
  • Özdemir, M., 1984. Tuz Gölü bölgesinin bouguer gravite alanının filtrelenmesi ve temel yapı derinliğinin araştırılması, İ.Ü. Yerbilimleri Dergisi, Cilt. 4, 67-86
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi