Kristal Yöneliminin ve Sıcaklığın Cu Nano Telinin Mekanik Özelliklerine Etkisinin Moleküler Dinamik Benzetimi ile İncelenmesi

Bu çalışmada , ve yüksek simetrili kristalografik yönelimleri boyunca Cu nano teline uygulanan tek eksenli gerilme deformasyonunun mekanik özelliklere etkisi Moleküler Dinamik (MD) benzetim yöntemi ile incelendi. Atomlar üzerine etki eden kuvvetler çok cisim etkileşmelerini içeren Gömülmüş Atom Metodu (GAM) potansiyel fonksiyonunun türevinden elde edildi. Farklı kristal yönelimlerine sahip Cu model nano tellerin farklı sıcaklıklar altında zor-zorlanma eğrileri, elastiklik modülü (E), akma zoru değerleri belirlendi. Elde edilen atomik görüntüler ve genel komşu analiz metodu (Common Neighbor Analysis-CNA) kullanılarak uygulanan gerilme sonucu nano tellerde meydana gelen plastik deformasyonun bütün yönelimler için Shockley kısmi dislokasyonların aktif hale geçmesi ve yığılım kusurları sonucu meydana geldiği tespit edildi. Ayrıca ve yönelimleri için akma meydana geldiğinde ikiz yapılarının oluşumu belirlendi. Kristal yönelimlerinin nano telin mekanik özellikleri üzerinde önemli bir etkiye sahip olduğu görüldü.

Investigation of the Effect of Crystal Orientation and Temperature on Mechanical Properties of Cu Nanowire by Molecular Dynamics Simulation

In this study, the effect of uniaxial tensile strain applied to Cu nanowire along the , and highly symmetric crystallographic orientations on the mechanical properties was investigated by Molecular Dynamics (MD) simulation method. The forces acting on atoms were obtained from the derivative of the Embedded Atom Method (EAM) potential function, which includes many-body interactions. The Stress-strain curves, Young's modulus (E), yielding strength, and values of Cu model nanowires with different crystal orientations were determined under different temperatures. By using the obtained atomic images and the Common Neighbor Analysis method (CNA), it was determined that the plastic deformation occurred in the nanowires as a result of the stress applied as a result of the activation of Shockley partial dislocations and stacking faults defects for all orientations. In addition, for the and orientations, the formation of twin structures was determined when yielding occurred. It was seen that the crystal orientations have a significant effect on the mechanical properties of the nanowire.

___

  • Diao, J., Gall, K., Dunn, M.L. 2004. Yield strength asymmetry in metal nanowires, Nano Lett, 4, pp. 1863-1867. doi.org/10.1021/nl0489992
  • Tosatti, E., Prestipino, S., Kostlmeier, S., Dal Corso, A., Di Tolla, F.D. 2001. String tension and stability of magic tip-suspended nanowires, Science, 291, pp. 288-290. doi: 10.1126/science.291.5502.288
  • Kondo, Y., Takayanagi, K. 1997. Gold nanobridge stabilized by surface structure, Phys. Rev. Lett. 79 (18),3455-3458. doi.org/10.1103/PhysRevLett.79.3455
  • Pasquier, A., Unalan, H. E., Kanwal, A., Miller, S., Chhowalla, M. 2005. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells, Appl. Phys. Lett., 87, 203511. doi.org/10.1063/1.2132065
  • Lee, K., Wu, Z., Chen, Z., Ren, F., Pearton, S. J., Rinzler, A. G. 2004. Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diode, Nano Lett., 4, 911-914. doi.org/10.1021/nl0496522
  • Li, J., Hu, L., Wang, L., Zhou, Y., Gruner, G., Marks, T. J. 2006. Organic light-emitting diodes having carbon nanotube anodes, Nano Lett., 6, 2472-2477. doi.org/10.1021/nl061616a
  • Sainath, G., Choudhary, B.K. 2016. Orientation dependent deformation behaviour of bcc iron nanowires, Computational Materials Science, 111, pp. 406-415. doi.org/10.1016/j.commatsci.2015.09.055
  • Wen, Y.H., Zhang, Y., Wang, Q., Zheng J.C., Zhu, Z.Z. 2010. Orientation-dependent mechanical properties of Au nanowires, Computational Materials Science, 48, pp. 513-519. doi.org/10.1016/j.commatsci.2010.02.015
  • Kizuka, T. 1998. Atomistic visualization of deformation in gold, Phys. Rev. B, 57 (18), pp. 11158-11163. doi.org/10.1103/PhysRevB.57.11158
  • Tschopp, M.A., McDowell, D.L. 2007. Tension-compression asymmetry in homogeneous dislocation nucleation in single crystal copper, Appl. Phys. Lett., 90, 121916. doi.org/10.1063/1.2715137
  • Tschopp, M.A., McDowell, D.L. 2008. Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading, J. Mech. Phys. Solids, 56, pp. 1806-1830. doi.org/10.1016/j.jmps.2007.11.012
  • Jing, Y., Meng, Q., Zhao, W. 2009. Molcular Dynamics simulations of the tensile and melting behaviours of silicon nanowires, Physica E, 41, pp. 685-689. doi.org/10.1016/j.physe.2008.11.006
  • Katakam, K. C., Yedla, N. 2021. Influence of orientation and temperature on the mechanical properties and deformation behavior of nickel nanowire under bending: A large scale molecular dynamics simulation, Materials Today: Proceedings, 39, pp. 1727-1732. doi.org/10.1016/j.matpr.2020.06.302
  • Jelinek, P., Perez, R., Ortega, J., Flores, F. 2003. First-principles simulations of the stretching and final breaking of Al nanowires: Mechanical properties and electrical conductance, Phys.Rev. B., 68, 085403. doi.org/10.1103/PhysRevB.68.085403
  • Cai, J., Ye, Y.Y. 1996. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys, Phys. Rev. B, 54, 8398. doi.org/10.1103/PhysRevB.54.8398
  • Tolpin, K.A., Bachurin, V.I., Yurasova, V.E. 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles, Nucl. Instrum. Methods Phys. Res. B, 273, pp. 76-79. doi.org/10.1016/j.nimb.2011.07.043
  • Hong, Z.H., Fang, T.H.,Hwang,S.F. 2011. Phase transformation of stress-induced zinc oxide nanobelts using molecular dynamics, Computational Materials Science, 50, pp. 1994-1950. doi.org/10.1016/j.commatsci.2011.01.049
  • Gao, Y., Wang, H., Zhao, J., Sun, C., Wang, F. 2011. Anisotropic and temperature effects on mechanical properties of copper nanowires under tensile loading, Computational Materials Science, 50, pp. 3032-3037. 10.1016/j.commatsci.2011.05.023
  • Zhang, L., Lu, C., Tieu, A.K. 2018. Nonlinear elastic response of singel crystal Cu under uniaxial loading by molecular dynamics study, Materials Letters, 227, pp. 236-239. doi.org/10.1016/j.matlet.2018.05.094
  • Sarangi, S.S. 2021. Study on Young’s modulus of metallic nanowires using classical molecular dynamics simulations, Materials Today: Proceeding s, 41, pp. 413-415. doi.org/10.1016/j.matpr.2020.09.800
  • Xu, W., Kim, W.K. 2019. Molecular dynamics simulation of the uniaxial tensile test of silicon nanowires using the MEAM potential, Mechanics of Materials, 137, 103140. doi.org/10.1016/j.mechmat.2019.103140
  • Alian, A.R., Ju, Y., Muguid, S.A. 2019. Comprehensive atomistic modeling of copper nanowires-based surface connectors, Materials and Design, 175, 107812. doi.org/10.1016/j.matdes.2019.107812
  • http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.04.2021).
  • Kazanc, S. 2013. The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy, Can. J. Phys., 91 (10), pp.833-838. doi:10.1139/cjp-2013-0090
  • Kazanc, S., Ozgen, S., Adiguzel, O. 2003. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy, Physica B, 334(3-4), pp. 375-381. doi:10.1016/S0921-4526(03)00101-7
  • Foiles, S.M., Baskes, M.I., Daw, M.S. 1986, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B, 33, 7983. doi.org/10.1103/PhysRevB.33.7983
  • Malins, A., Williams, S.R., Eggers, J., Royall, C.P. 2013. Identification of structure in condensed matter with the topological cluster classification, The Jouurnal of Chemical Physics, 139, 234506. doi.org/10.1063/1.4832897
  • Stukowski, A. 2012. Structure identification methods for atomistic simulations of crystalline materials, Modelling and Simulation in Materials Science and Engineering, 20, 045021. doi.org/10.1088/0965-0393/20/4/045021
  • Stukowski, A. 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, 18(1), 015012. doi:10.1088/0965-0393/18/1/015012
  • Wu, H.A. 2006, Molecular dynamics study of the mechanism of metal nanowires at finite temperature, European Journal of Mechanics A/Solids, 25, pp. 370-377. doi.org/10.1016/j.euromechsol.2005.11.008
  • Sanders, P.G., Eastman, J.A., Weertman J.R. 1997, Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium, Acta Mater., 45(10), pp. 4019-4025. doi:10.1016/S1359-6454(97)00092-X
  • Wen, Y. H., Zhu, Z. Z., Zhu, R. Z. 2008. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects, Computational Materials Science, 41, 553-560. doi.org/10.1016/j.commatsci.2007.05.012
  • Fang, R., Wang, W., Guo, L., Zhang, K., Zhang, X., Li, H. 2020. Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. Journal of Crystal Growth, 532, 125382. doi.org/10.1016/j.jcrysgro.2019.125382