İnsan Femur Kemiğinde Burkulma Davranışının Sonlu Elemanlar Yöntemiyle İncelenmesi

Bu çalışmada eksenel yükleme altında insan femur modeli üzerinde burkulma etkisinin biyomekanik davranışın sonlu elemanlar metodu (SEM) kullanılarak analiz edilmiştir. İnsan femurunun 3 boyutlu (3D) modeli Geomagic ve SolidWorks programı kullanılarak oluşturulmuştur. Sonlu eleman analizleri ise Ansys Workbench 18.2 programında gerçekleştirilmiştir. 3D insan femur modeline eksenel yükleme sonucu oluşan deformasyonlar ve gerilmeler basma ve flambaj olarak ayrı ayrı incelenmiştir. Yapısal analiz soncunda femur kemiğinde oluşan deformasyon 2.06 mm iken, burkulma analizi sonucunda femur kemiğinde oluşan deformasyon ise 1.29 mm olarak hesaplanmıştır. Bu durum insan kemiğinde eksenel yük altında flambaj etkisinin düşük olduğunu göstermektedir. Bu durumun femur kemiğinin anatomik yapısı ile ilişkili olduğu düşünülmektedir. Ayrıca basma etkisindeki gerilme değeri 15.71 MPa iken, flambaj etkisindeki kritik burkulma gerilmesi ise 8.30 MPa olarak heaplanmıştır. Teorik olarak kritik yük (???) 2102.21 N olarak hesap edilirken, SEA’ de ise 2164.54 N olarak hesaplanmıştır.

Investigation of Buckling Behaviour of Human Femur by Finite Elements Methods

In this study, biomechanical behaviors of the buckling effect on human femur model under axial loading were analyzed by using finite element method (FEM). The 3D model of the human femur was created using the Geomagic and SolidWorks 2018 program. Finite element analysis was performed in Ansys Workbench 18.2. The deformations and stresses resulting from axial loading to the 3D human femur model were examined separately as compression and buckling. While the deformation of the femoral bone was 2.06 mm in structural analysis, the deformation of the femoral bone was calculated as 1.29 mm in buckling analysis. This situation shows that the flambaj effect is low in the human bone under axial load. This situation is thought to be related to the anatomical structure of the femoral bone. In addition, while the stress value at the compression effect was 15.71 MPa, the critical buckling stress under flambaj effect was 8.30 MPa. Theoretically, while the critical load (???) was calculated as 2102.21 N, it was calculated as 2164.54 N in SEA.

___

  • [1] Yayla, P. Cisimlerin Mukavemeti (Teori ve Çözümlü Problemler). İstanbul: Çağlayan Kitapevi, 2001.
  • [2] Atmaca, H., Kesemenli, C., Memişoğlu, K., Özkan, A., Celik, Y. 2013. Changes in the loading of tibial articular cartilage following medial meniscectomy: a finite element analysis study, Knee Surg Sports Traumatol Arthrosc, Cilt. 21, Sayı. 12), s. 2667-73.
  • [3] Inal, S., Taspinar, F., Gulbandilar, E., Gok, K. 2014. Comparison of the biomechanical effects of pertrochanteric fixator and dynamic hip screw on an intertrochanteric femoral fracture using the finite element method, The International Journal of Medical Robotics and Computer Assisted Surgery, Cilt. Sayı. s. n/a-n/a.
  • [4] Gok, A., Inal, S., Taspinar, F., Gulbandilar, E., Gok, K. 2014. Fatigue behaviors of different materials for schanz screws in femoral fracture model using finite element analysis, Optoelectronics And Advanced Materials-Rapid Communications, Cilt. 8, Sayı. 5-6), s. 576-80.
  • [5] Atmaca, H., Özkan, A., Mutlu, İ., Çelik, T., Ugur, L., Kisioglu, Y. 2014. The effect of proximal tibial corrective osteotomy on menisci, tibia and tarsal bones: a finite element model study of tibia vara, The International Journal of Medical Robotics and Computer Assisted Surgery, Cilt. 10, Sayı. 1), s. 93-7.
  • [6] Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K., Nakamura, K. 2007. Prediction of strength and strain of the proximal femur by a CT-based finite element method, Journal of Biomechanics, Cilt. 40, Sayı. 8), s. 1745- 53.
  • [7] Ota, T., Yamamoto, I., Morita, R. 1999. Fracture simulation of the femoral bone using the finite-element method: How a fracture initiates and proceeds, J Bone Miner Metab, Cilt. 17, Sayı. 2), s. 108-12.
  • [8] Sowmianarayanan, S., Chandrasekaran, A., Kumar, R.K. 2008. Finite element analysis of a subtrochanteric fractured femur with dynamic hip screw, dynamic condylar screw, and proximal femur nail implants — a comparative study, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Cilt. 222, Sayı. 1), s. 117-27.
  • [9] Yu, X.-z., Guo, Y.-m., Li, J., Zhang, Y.-q., He, R.-x. 2007. Finite element analysis of impact loads on the femur, Chin J Traumatol, Cilt. 10, Sayı. 1), s. 44-8.
  • [10] Senalp, A.Z., Kayabasi, O., Kurtaran, H. 2007. Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis, Materials & Design, Cilt. 28, Sayı. 5), s. 1577-83.
  • [11] Kayabaşı, O., Yüzbasıoğlu, E., Erzincanlı, F. 2006. Static, dynamic and fatigue behaviors of dental implant using finite element method, Advances in Engineering Software, Cilt. 37, Sayı. 10), s. 649-58.
  • [12] Kayabasi, O., Ekici, B. 2007. The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method, Materials & Design, Cilt. 28, Sayı. 8), s. 2269-77.
  • [13] Lee, T., Choi, J.B., Schafer, B.W., et al. 2009. Assessing the Susceptibility to Local Buckling at the Femoral Neck Cortex to Age-Related Bone Loss, of Biomedical Engineering, Cilt. 37, Sayı. 9), s. 1910-20.
  • [14] Madeti, B.K., Rao, C.S., Gugulothu, S.P. 2018. Buckling and failure analysis of bones in hip joint, Journal of Mechanics in Medicine and Biology, Cilt. 18, Sayı. 05), s. 1850052.
  • [15] Kadir Gök, A.G. ANSYSWORKBENCH – Bilgisayar Destekli Yapısal Analiz Uygulamaları. İstanbul: Abaküs Kitap, 2018.
  • [16] Gok, K., Inal, S., Gok, A., Pinar, A.M. 2016. Biomechanical effects of three different configurations in Salter Harris type 3 distal femoral epiphyseal fractures, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Cilt. Sayı. s. 1-9.
  • [17] Gok, K. 2015. Development of three-dimensional finite element model to calculate the turning processing parameters in turning operations, Measurement, Cilt. 75, Sayı. s. 57-68.
  • [18] Inal, S., Taspinar, F., Gulbandilar, E., Gok, K. 2015. Comparison of the biomechanical effects of pertrochanteric fixator and dynamic hip screw on an intertrochanteric femoral fracture using the finite element method, The International Journal of Medical Robotics and Computer Assisted Surgery, Cilt. 11, Sayı. 1), s. 95-103.
  • [19] Erdem, M., Gok, K., Gokce, B., Gok, A. 2016. Numerical Analysis Of Temperature, Screwing Moment And Thrust Force Using Finite Element Method In Bone Screwing Process, Journal of Mechanics in Medicine and Biology, Cilt. Sayı. s. 1750016.
  • [20] Gok, K., Gok, A., Kisioglu, Y. 2014. Optimization of processing parameters of a developed new driller system for orthopedic surgery applications using Taguchi method, Int J Adv Manuf Technol, Cilt. Sayı. s. 1-12.
  • [21] Afsar, E., Taspinar, F., Calik, B.B., Ozkan, Y., Gok, K. 2016. Use of the finite element analysis to determine stresses in the knee joints of osteoarthritis patients with different Q angles, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Cilt. Sayı. s. 1-7.
  • [22] Gok, K., Taspinar, F., Inal, S., Gulbandilar, E. 2015. Importance Of Sidebar-Bone Spacing During The Application Of Pertrochanteric Fixator On Femoral Intertrochanteric Fracture Model; Comparison Of The Biomechanical Effects Using Finite Element Method, Biomedical Engineering: Applications, Basis and Communications, Cilt. 27, Sayı. 03), s. 1550030.
  • [23] Yuan-Kun, T., Yau-Chia, L., Wen-Jen, Y., et al. Temperature Rise Simulation During a Kirschner Pin Drilling in Bone. Bioinformatics and Biomedical Engineering , 2009 ICBBE 2009 3rd International Conference on. Beijing 2009, p. 1-4.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi