Doğal Antimikrobiyal Maddelerin Cerrahi İpliklerin Özelliklerine Etkisi

Cerrahi girişim uygulanan vücut bölgelerinde, ameliyat sonrası cerrahi alan enfeksiyonları (CAE) ortaya çıkmaktadır. Cerrahide yaralar cerrahi iplik olarak bilinen materyallerle kapatılmaktadır. Bazı cerrahi iplik türleri, CAE'ye sebep olan bakterilerin çoğalmasına neden olmaktadır. Cerrahi iplik kaynaklı enfeksiyonun önüne geçmek için antimikrobiyallerle kaplama yapılmaktadır. Bu çalışmada, CAE’nin oluşmaması için farklı tipteki cerrahi iplikler doğal antimikrobiyal maddelerle kaplanmıştır ve bu ajanların cerrahi ipliklerin morfolojik ve mekanik özelliklerine olan etkisi değerlendirilmiştir. Bu bağlamda, doğal bir polimer olan kitosan antimikrobiyal özelliğe sahip olması sebebiyle seçilmiştir ve kitosan yine doğal antimikrobiyal madde olan aloe vera ve zeytin yaprağı ekstresi ile beraber asetik asit çözeltisi içerisinde ultrason teknolojisi kullanılarak karıştırılıp kaplama solüsyonu hazırlanmıştır. Doğal maddelerin sinerjistik etkisini incelemek için farklı konsantrasyonlarda hazırlanan kaplama solüsyonlarına multifilament ipek, multifilament poliester ve monofilament poliamid cerrahi iplikler daldırılarak kaplama yapılmıştır. Fourier dönüşümlü kızılötesi spektroskopisi kullanılarak kaplanmış cerrahi ipliklerin üzerindeki fonksiyonel gruplar belirlenmiştir. Cerrahi ipliklerin yüzeyleri taramalı elektron mikroskobuyla incelenerek uzun daldırma ve kurutma işlemleri sonrası kaplama malzemesinin yüzeye güçlü bir şekilde tutunduğu gözlemlenmiştir. Ayrıca yapılan mekanik testler sonucunda kaplama işleminin cerrahi ipliklerin mekanik özelliklerini arttırdığı tespit edilmiştir.

Effect of Natural Antimicrobial Agents on the Characteristics of Surgical Sutures

Surgical site infections (SSI) occur after the surgery in body parts where the operation took place. Insurgeries, wounds are closed by thread-like materials known as sutures. Some types of sutures maypromote bacteria proliferation which is one of the leading causes of the SSI. Sutures undergo coatingprocedure to prevent infection occurrence. In this study, different types of surgical sutures werecoated with natural antimicrobial agents to evaluate their effect on morphological and mechanicalproperties of the surgical sutures. In this context, due to its antimicrobial ability, chitosan was selectedand dissolved in acetic acid solution with other natural antimicrobial agents (aloe vera and olive leafextract) through ultrasound technology. Multifilament silk, multifilament polyester, andmonofilament polyamide sutures were then dipped into those solutions prepared at differentconcentrations in order to study the synergistic effect of antimicrobial agents. Fourier transforminfrared spectroscopy with attenuated total reflectance (FTIR-ATR) was performed to identify thefunctional groups on the surface of the coated sutures. Suture surfaces were also analyzed by scanningelectron microscope (SEM) to observe the coating on the surface of sutures. Strong adhesion wasdetermined between the suture surface and the coating material after long duration of dipping anddrying procedure. It was also found that the coating process increased the mechanical properties ofthe sutures.

___

  • [1] Mackenzie, D. 1973. The History of Sutures, Medical History, Vol. 17(2), p. 158-168.
  • [2] Chu, C.C., J.A. Von Fraunhofer, and H.P. Greisler. 1996. Wound Closure Biomaterials and Devices. CRC Press, p. 416.
  • [3] Swanson, N.A., Tromovitch, T.A. 1982. Suture Materials, 1980s: properties, uses, and abuses, International journal of dermatology, Vol. 21(7), p.373-378.
  • [4] Dennis, C., et al. 2016. Suture Materials— Current and Emerging Trends, Journal of Biomedical Materials Research Part A, Vol. 104(6), p. 1544-1559. DOI: https://doi.org/10.1002/jbm.a.35683
  • [5] Islam, A., Ehsan, A. 2011. Comparison of Suture Material and Technique of Closure of Subcutaneous Fat and Skin in Caesarean Section, North American Journal of Medical Sciences, Vol. 3(2), p. 85. DOI: 10.4297/najms.2011.385
  • [6] Pillai, C.K.S., Sharma, C.P. 2010. Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance, Journal of Biomaterials Applications, Vol. 25(4), p. 291-366. DOI: 10.1177/0885328210384890
  • [7] Singhal, J.P., Singh, H., and Ray, A.R. 1988. Absorbable Suture Materials: Preparation and Properties, Polymer Reviews, Vol. 28 (3-4), p. 475-502. DOI:https://doi.org/10.1080/15583728808085383
  • [8] Horacek, I. 1989. Survey of the Present Knowledge on Biodegradable Polymers for Resorbable Sutures. Chemicke Vlakna, Vol. 39, p. 214-222.
  • [9] Hon, L.Q., et al. 2009. Vascular Closure Devices: A Comparative Overview, Current problems in Diagnostic Radiology, Vol. 38(1), p. 33-43. DOI: 10.1067/j.cpradiol.2008.02.002
  • [10] Yu, G., Cavaliere, R. 1983. Suture Materials. Properties and Uses, Journal of American Podiatric Medical Association, Vol. 73(2), p. 57-64.
  • [11] Kudur, M.H., et al. 2009. Sutures and Suturing Techniques in Skin Closure, Indian Journal of Dermatology, Venereology, and Leprology, Vol. 75(4), p. 425. DOI: 10.4103/0378-6323.53155
  • [12] Chang, W.K., et al. 2012. Triclosan-Impregnated Sutures to Decrease Surgical Site Infections: Systematic Review and Meta-analysis of Randomized Trials, Annals of Surgery, Vol. 255(5), p. 854-859. DOI: 10.1097/SLA.0b013e31824e7005
  • [13] Edmiston, C.E., et al. 2006. Bacterial Adherence to Surgical Sutures: Can Antibacterial-Coated Sutures Reduce the Risk of Microbial Contamination?, Journal of the American College of Surgeons, Vol. 203(4), p. 481-489. DOI: 10.1016/j.jamcollsurg.2006.06.026
  • [14] Mingmalairak, C. 2011. Antimicrobial Sutures: New Strategy in Surgical Site Infections, Science Against Microbial Pathogens: Communicating Current Research and Technological Advances: Formatex Research Center, p. 313-323.
  • [15] Hoshino, S., et al. 2013. A Study of the Efficacy of Antibacterial Sutures for Surgical Site Infection: A Retrospective Controlled Trial, International Surgery, Vol. 98(2), p. 12-132. DOI: 10.9738/CC179
  • [16] Federov, M., et al. 2006. Structure and Strength Properties of Surgical Sutures Modified with a Polyhydroxybutyrate Coating, Fibre Chemistry, Vol. 38(6), p. 471-475.
  • [17] Alexander, J.W., Solomkin, J.S., and Edwards, M.J. 2011. Updated Recommendations for Control of the Surgical Site Infections, Annals of Surgery, Vol. 253(6), p. 1082-1092. DOI: 10.1097/SLA.0b013e31821175f8
  • [18] Cao, G.F., et al. 2014. Sutures Modified by SilverLoaded Montmorillonite with Antibacterial Properties, Applied Clay Science, Vol. 93, p. 102-106. DOI: 10.1016/j.clay.2014.03.007
  • [19] Fleck, T., et al. 2007. Triclosan-Coated Sutures for the Reduction of Sternal Wound Infections: Economic Considerations, The Annals of Thoracic Surgery, Vol. 84(1), p.232-236. DOI: 10.1016/j.athoracsur.2007.03.045
  • [20] Zhang, S., et al. 2014. Silver Nanoparticle-Coated Suture Effectively Reduces Inflammation and Improves Mechanical Strength at Intestinal Anastomosis in Mice, Journal of Pediatric Surgery, Vol. 49(4), p. 606-613. DOI: 10.1016/j.jpedsurg.2013.12.012
  • [21] Elek, S.D., Conen, P. 1957. The Virulence of Staphylococcus Pyogenes for Man. A Study of the Problems of Wound Infection, British Journal of Experimental Pathology, Vol. 38(6), p. 573.
  • [22] Wang, Z., et al. 2013. Systematic Review and Meta‐ Analysis of Triclosan‐Coated Sutures for the Prevention of Surgical‐Site Infection, British Journal Of Surgery, Vol. 100(4), p. 456-473. DOI: 10.1002/bjs.9062
  • [23] Schweizer, H.P. 2001. Triclosan: A Widely Used Biocide and Its Link to Antibiotics, FEMS Microbiology Letters, Vol. 202(1), p. 1-7.
  • [24] Yazdankhah, S.P., et al. 2006. Triclosan and Antimicrobial Resistance in Bacteria: An Overview, Microbial Drug Resistance, Vol. 12(2), p. 83-90.
  • [25] Clayton, E.M.R., et al. 2011. The Impact of Bisphenol a and Triclosan on Immune Parameters in the US Population, NHANES 2003–2006, Environmental Health Perspectives, Vol. 119(3), p. 390. DOI: 10.1089/mdr2006.12.83
  • [26] Jain, A., et al. 2014. Antimicrobial Polymers, Advanced Healthcare Materials, Vol. 3(12), p. 1969- 1985. DOI: 10.1002/adhm.201400418
  • [27] De Alvarenga, E.S. 2011. Characterization and Properties of Chitosan, Biotechnology of Biopolymers Magdy Elnashar, IntechOpen. DOI: 10.5772/17020
  • [28] Shigemasa, Y., Minami, S. 1996. Applications of Chitin and Chitosan for Biomaterials, Biotechnology and Genetic Engineering Reviews, Vol. 13(1), p. 383-420.
  • [29] Rinaudo, M. 2006. Chitin and Chitosan: Properties and Applications, Progress in Polymer Science, Vol. 31(7): p. 603-632. DOI: 10.1016/j.progpolymsci.2006.06.001
  • [30] Azad, A.K., et al. 2004. Chitosan Membrane as a Wound‐Healing Dressing: Characterization and Clinical Application, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 69(2), p. 216-222. DOI: 10.1002/jbm.b.30000
  • [31] Kurita, K. 1998. Chemistry and Application of Chitin and Chitosan, Polymer Degradation and Stability, Vol. 59(1-3), p. 117-120. DOI: 10.1016/S0141- 3910(97)00160-2
  • [32] Allan, C.R., Hadwiger, L.A. 1979. The Fungicidal Effect of Chitosan on Fungi of Varying Cell Wall Composition, Experimental Mycology, Vol. 3(3), p.285-287. DOI: 10.1016/S0147-5975(79)80054-7
  • [33] Hirano, S., Nagao, N. 1989. Effects of Chitosan, Pectic Acid, Lysozyme, and Chitinase on the Growth of Several Phytopathogens, Agricultural and Biological chemistry, Vol. 53(11), p. 3065-3066.
  • [34] Kong, M., et al. 2010. Antimicrobial Properties of Chitosan and Mode of Action: A State of The Art Review, International Journal of Food Microbiology, Vol. 144(1), p. 51-63. DOI: 10.1016/j.ijfoodmicro.2010.09.012
  • [35] Kong, M., et al. 2008. Antibacterial Mechanism of Chitosan Microspheres in a Solid Dispersing System Against E. Coli. Colloids and Surfaces B: Biointerfaces, Vol. 65(2), p. 197-202. DOI: 10.1016/j.colsurfb.2008.04.003
  • [36] Sudarshan, N.D., Hoover, D., and Knorr, D. 1992. Antibacterial Action of Chitosan, Food Biotechnology, Vol. 6(3), p. 257-272. DOI: 10.1080/08905439209549838
  • [37] Sudjana, A.N., et al. 2009. Antimicrobial Activity of Commercial Olea Europaea (Olive) Leaf Extract, International Journal of Antimicrobial Agents, Vol. 33(5), p. 461-463. DOI: 10.1016/j.ijantimicag.2008.10.026
  • [38] Micol, V., et al. 2005. The Olive Leaf Extract Exhibits Antiviral Activity Against Viral Haemorrhagic Septicaemia Rhabdovirus (VHSV), Antiviral Research, Vol. 66(2-3), p. 129-136. DOI: 10.1016/j.antiviral.2005.02.005
  • [39] Renis, H.E. 1969. In Vitro Antiviral Activity of Calcium Elenolate, Antimicrobial Agents and Chemotherapy, Vol. 9, p. 167.
  • [40] Fleming, H., Walter, W., and Etchells, J. 1969. Isolation of a Bacterial Inhibitor From Green Olives, Applied Microbiology, Vol. 18(5), p. 856-860.
  • [41] Hoffman, R., et al. 2010. Olive Leaf Extract, Viitattu, Vol. 5, p. 2010.
  • [42] Nejatzadeh-Barandozi, F. 2013. Antibacterial Activities and Antioxidant Capacity of Aloe Vera, Organic and Medicinal Chemistry Letters, Vol. 3(1), p. 5. DOI: 10.1186/2191-2858-3-5
  • [43] Alemdar, S., Agaoglu, S. 2009. Investigation of In Vitro Antimicrobial Activity of Aloe Vera Juice, J Anim Vet Adv, Vol. 8(1), p. 99-102.
  • [44] Olaleye, M., Bello-Michael, C. 2005. Comparative Antimicrobial Activities of Aloe Vera Gel and Leaf, African Journal of Biotechnology, Vol. 4(12), p. 1413- 1414.
  • [45] Deopura, B., et al. 2008. Polyesters and Polyamides. CRC Press Woodhead Publishing, Cambridge, 608p.
  • [46] Gao, Y., Cranston, R. 2008. Recent Advances in Antimicrobial Treatments of Textiles, Textile Research Journal, Vol. 78(1), p. 60-72. DOI: 10.1177/0040517507082332
  • [47] Kenawy, E.R., et al. 2002. Biologically Active Polymers. V. Synthesis and Antimicrobial Activity of Modified Poly (Glycidyl Methacrylate‐Co‐2‐ Hydroxyethyl Methacrylate) Derivatives with Quaternary Ammonium and Phosphonium Salts, Journal of Polymer Science Part A: Polymer Chemistry, Vol. 78(1), p. 60-72. DOI: 10.1002/pola.10325
  • [48] Huang, K.S., et al. 2008. Application of LowMolecular-Weight Chitosan in Durable Press Finishing, Carbohydrate Polymers, Vol. 73(2), p. 254- 260. DOI: 10.1016/j.carbpol.2007.11.023
  • [49] Ma, Y., Zhou, T., and Zhao, C. 2008. Preparation of Chitosan–Nylon-6 Blended Membranes Containing Silver Ions as Antibacterial Materials, Carbohydrate Research, Vol. 343(2), p. 230-237. DOI: 10.1016/j.carres.2007.11.006
  • [50] Strnad, S., et al. 2008. Influence of chemical modification on sorption and mechanical properties of cotton fibers treated with chitosan, Textile Research Journal, Vol. 78(5), p. 390-398.
  • [51] Ye, W., et al. 2005. Novel Core-Shell Particles with Poly (N-Butyl Acrylate) Cores and Chitosan Shells as an Antibacterial Coating for Textiles, Polymer, Vol. 46(23), p. 10538-10543. DOI: 10.1016/j.polymer.2005.08.019
  • [52] Joshi, M., et al. 2009. Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products, Indian Journal of Fibre & Textile Research, Vol. 34(3), p. 295-304.
  • [53] Markin, D., Duek, L., and Berdicevski, I. 2003. In Vitro Antimicrobial Activity of Olive Leaves, Antimikrobielle Wirksamkeit von Olivenblättern in vitro, Vol. 46(3-4), p. 132-136.
  • [54] Yang, Y., et al. 2017. Bacterial Inhibition Potential of Quaternised Chitosan-Coated VICRYL Absorbable Suture: An In Vitro and In Vivo Study, Journal of Orthopaedic Translation, Vol. 8, p. 49-61. DOI: 10.1016/j.jot.2016.10.001
  • [55] Kim, S. 2011. Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications. Taylor & Francis Group. Broken Sound Parkway NW, Boca Raton. p.195
  • [56] Altınel, Y., et al. 2012. The Effect of a Chitosan Coating on the Adhesive Potential and Tensile Strength of Polypropylene Meshes, Hernia, Vol. 16, p.709-714. DOI 10.1007/s10029-012-0950-1
  • [57] Pharmacopeia, U., USP 29–NF 24. Rockville, MD: USP, 2005.
  • [58] Masood, R., et al. 2017. In Situ Development and Application of Natural Coatings on Non-Absorbable Sutures to Reduce Incision Site Infections, Journal of Wound Care, Vol. 26(3), p. 115-120. DOI: 10.12968/jowc.2017.26.3.115
  • [59] Silverstein, R.M., Bassler, G.C., and Morrill, T.C. 1981. Spectroscopic identification of organic compounds. John Wiley & Sons, New York, 550p.
  • [60] Debbabi, F., et al. 2017. Development and Characterization of Antibacterial Braided Polyamide Suture Coated with Chitosan-Citric Acid Biopolymer, Journal of Biomaterials Applications, Vol. 32(3), p. 384-398. DOI: 10.1177/0885328217721868
  • [61] Naleway, S.E., et al. 2015. Mechanical Properties of Suture Materials in General and Cutaneous Surgery, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 103(4), p. 735-742. DOI: 10.1002/jbm.b.33171
  • [62] Tera, H. 1976. Tensile Strength of Twelve Types of Knots Employed in Surgery, Using Different Material, Acta Chir. Scand., Vol. 142, p. 83-90.
  • [63] Li, Y., et al. 2012. New Bactericidal Surgical Suture Coating. Langmuir, Vol. 28(33), p. 12134-12139. DOI: 10.1021/la302732w