GIDALARDAKİ TETRASİKLİN KALINTILARININ İYONİK SIVI DESTEKLİ DİSPERSİF SIVI SIVI MİKROEKSTRAKSİYONU SONRASI HPLC İLE TAYİNİ

Bu çalışmada, süt, yumurta ve bal numunelerinde yüksek performanslı sıvı kromatografisi tayininden önce altı tetrasiklin kalıntısının (minosiklin, oksitetrasiklin, tetrasiklin, klortetrasiklin, metasiklin, doksisiklin) zenginleştirilmesi için iyonik sıvı bazlı dispersif sıvı-sıvı mikro ekstraksiyon yöntemi geliştirilmiştir. Çalışmada ekstraktant olarak 1-hegzil-3- metilimidazolyum bis[(triflorometan)sülfonil]imid iyonik sıvısı kullanılmıştır. Ekstraksiyon verimliliğini arttırmak için, pH, iyonik sıvı hacmi, dispersif çözücü türü ve hacmi, ekstraksiyon ve santrifüj süresi optimize edilmiştir. İncelenen tetrasiklin antibiyotiklerinin zenginleştirme faktörleri, optimize koşullar altında 15 ile 105 aralığında hesaplanmıştır. Çalışılan gerçek numunelerde herhangi bir tetrasiklin kalıntısına rastlanmamıştır. Yöntemin doğruluğu için, süt, bal ve yumurta örneklerine 100 ve 250 μg L-1 derişimde standart tetrasiklin karışımı eklenmiş ve geri kazanım değerleri 50 ile 95 arasında elde edilmiştir.

DETERMINATION OF TETRACYCLINE RESIDUES AFTER IONIC LIQUID ASSISTED DISPERSIVE LIQUID LIQUID MICROEXTRACTION IN DAIRY FOODS

In this study, ionic liquid based dispersive liquidliquid preconcentration of the six tetracycline residues (minocycline, oxytetracycline, tetracycline, chlortetracycline, methacycline , doxycycline) before high performance liquid chromatographic determination in milk, egg and honey samples. For extraction, 1-hexyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl] imide ionic liquid was used as an extractant. To enhance the extraction efficiency, pH, volume of ionic liquid, type and volume of dispersive solvent, extraction time and centrifugation time were optimized. The enrichment factors of the studied tetracycline antibiotics were calculated in the range of 15 to 105 at optimized conditions. No residue of tetracyclines were found in the studied real samples. For the accuracy of this method, the 100 and 250 µg L-1 of standard tetracycline mixture solutions were spiked to the milk, honey and egg samples and the percentage recoveries were obtained between 50 and 95

___

  • [1] Liu, Y., Zhao, E., Zhu, W., Gao, H., Zhou, Z. 2009. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. J. Chromatogr. A, vol. 1216 (6), pp. 885-891. DOI: 10.1016/j.chroma.2008.11.076.
  • [2] Hopkins, Z.R., Blaney, L. 2014. A novel approach to modeling the reaction kinetics of tetracycline antibiotics with aqueous ozone. Sci. Total Environ., vol. 468, pp. 337- 344. DOI: 10.1016/j.scitotenv.2013.08.032.
  • [3] Lv, J.M., Ma, Y.L., Chang, X., Fan, S.B. 2015. Removal and removing mechanism of tetracycline residue from aqueous solution by using Cu13X. Chem. Eng. J., vol. 273, pp. 247- 253. DOI: 10.1016/j.cej.2015.03.080.
  • [4] The European Commission. 2010. Commission regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin, Official Journal of the European Union L15 1–72.
  • [5] Rezaee, M., Assadi, Y., Hosseini, M.R.M., Aghaee, E., Ahmadi, F., Berijani, S. 2006. Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A, vol. 1116 (1), pp. 1-9. DOI: 10.1016/j.chroma.2006.03.007.
  • [6] Rezaee, M., Yamini, Y., Faraji, M. 2010. Evolution of dispersive liquid–liquid microextraction method. J. Chromatogr. A, vol. 1217 (16), pp. 2342-2357. DOI: 10.1016/j.chroma.2009.11.088.
  • [7] Moreno-González, D., Gámiz-Gracia, L., Bosque-Sendra, J.M., GarcíaCampaña A.M. 2012. Dispersive liquid–liquid microextraction using a low density extraction solvent for the determination of 17 Nmethylcarbamates by micellar electrokinetic chromatography– electrospray–mass spectrometry employing a volatile surfactant, J. Chromatogr. A, vol. 1247, pp. 26-34. DOI: 10.1016/j.chroma.2012.05.048.
  • [8] Kamarei, F., Ebrahimzadeh, H., Yamini, Y. 2010. Optimization of temperature-controlled ionic liquid dispersive liquid phase microextraction combined with high performance liquid chromatography for analysis of chlorobenzenes in water samples. Talanta, vol. 83 (1), pp. 36–41. DOI:10.1016/j.talanta.2010.08.035
  • [9] Gao, S., You, J., Zheng, X., Wang, Y., Ren, R., Zhang, R., Bai, Y., Zhang, H. 2010. Determination of phenylurea and triazine herbicides in milk by microwave assisted ionic liquid microextraction high-performance liquid chromatography. Talanta, vol. 82 (4), pp. 1371–1377. DOI: 10.1016/j.talanta.2010.07.002.
  • [10] Guan, J., Zhang, C., Wang, Y., Guo, Y.G., Huang, P.T., Zhao, L.S. 2016. Simultaneous determination of 12 pharmaceuticals in water samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled with ultra-high performance liquid chromatography with tandem mass spectrometry. Anal. Bioanal. Chem., vol. 408 (28), pp. 8099-8109. DOI: 10.1007/s00216-016-9913-1.
  • [11] Zeeb, M., Ganjali, M.R., Norouzi, P. 2011. Modified ionic liquid coldinduced aggregation DLLME combined with spectrofluorimetry for trace determination of ofloxacin in pharmaceutical and biological samples. DARU, vol. 19 (6), pp. 446- 454.
  • [12] Hou, D., Guan, Y., Di, X. 2011. Temperature-induced ionic liquids dispersive liquid–liquid microextraction of tetracycline antibiotics in environmental water samples assisted by complexation. Chromatographia, vol. 73 (11-12), pp. 1057-1064. DOI: 10.1007/s10337-011-1992-8.
  • [13] Du, D.L., Wu, Y.Y., Kang, D., Wang, H.L., Huang, C.J., Li, Y.Y. 2014. Determination of tetracyclines in water by ethyl acetate-ionic liquid DLLME and high-performance liquid chromatography. Anal. Lett., vol. 47 (10), pp. 1783-1795.
  • [14] Song, J., Zhang, Z., H., Zhang, Y., Q., Feng, C., Wanga, G.N., Wang, J.P. 2014. Ionic liquid dispersive liquid– liquid microextraction combined with high performance liquid chromatography for determination of tetracycline drugs in eggs. Anal. Methods, vol. 6, pp. 6459–6466. DOI: 10.1039/C4AY01079E.
  • [15] Han, J., Wang, Y., Yu, C. L., Yan, Y. S., Xie, X. Q. 2011. Extraction and determination of chloramphenicol in feed water, milk, and honey samples using an ionic liquid/sodium citrate aqueous twophase system coupled with highperformance liquid chromatography. Anal. Bioanal. Chem., vol. 399 (3), pp. 1295-1304. DOI: 10.1007/s00216-010-4376-2.
  • [16] Chen, H., Chen, H., Ying, J., Huang, J., Liao, L. 2009. Dispersive liquid– liquid microextraction followed by HPLC as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey. Anal. Chim. Acta, vol. 632 (1), pp. 80-85. DOI: 10.1016/j.aca.2007.03.040.
  • [17] Yang, X. Zhang, S., Yu, W., Liu, Z., Lei, L., Li, Na., Zhang H., Yu, Y. 2014. Ionic liquid-anionic surfactant based aqueous two-phase extraction for determination of antibiotics in honey by highperformance liquid chromatography. Talanta, vol. 124, pp. 1-6. DOI: 10.1016/j.talanta.2014.02.039.
  • [18] Arroyo-Manzanares, N., GamizGracia, L., Garcia-Campana, A.M. 2014. Alternative sample treatments for the determination of sulfonamides in milk by HPLC with fluorescence detection. Food Chem., vol. 143, pp. 459-464.
  • [19] Baghdadi, M., Shemirani, F. 2008. Cold-induced aggregation microextraction: a novel sample preparation technique based on ionic liquids. Anal. Chim. Acta, vol. 613, pp. 56-63. DOI: 10.1016/j.aca.2008.02.057.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: 3
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi