Gediz Nehri Medar Havzası Meteorolojik ve Hidrolojik Kuraklık Analizleri

Akarsu havzalarında oluşan kuraklık olaylarının sürdürülebilir yönetim açısından karakteristik özelliklerinin belirlenmesi önemlidir. Bu sebeple oluşan kuraklık olaylarının süre, şiddet gibi karakteristik özelliklerinin tanımlanabilinmesi amacıyla indis yöntemleri geliştirilmiştir. Sunulan çalışmada, Gediz havzasında yer alan Medar alt havzasının meteorolojik ve hidrolojik kuraklıkları en yaygın olarak kullanılan standardize yağış indisi (SPI), standardize yağış evapotranspirasyonu indisi (SPEI) ve standardize akım indisi (SRI) yöntemleri kullanılarak araştırılmıştır. Havzayı temsil eden Akhisar ve Sarılar meteoroloji istasyonlarınnda gözlemlenen meteorolojik veriler ile beraber Medar çayı üzerinde Medar Köprüsünde gözlemlenen akım değerleri kullanılarak 1971-2015 yılları arasında aylık, 3 aylık, 6 aylık ve 12 aylık zaman dilimlerinden meydana gelen meteorolojik ve hidrolojik kuraklar belirlenmiştir. İlgili zaman dilimlerinde meydana gelen kuraklıkların karakteristik özellikleri Run teorisi kullanılarak açıklanmıştır. Çalışma sonucunda meteorolojik ve hidrolojik kuraklıkların karakteristik ilişkileri belirlenmiştir.

Meteorological and Hydrological Drought Analysis Of Medar Basin

It is important to determine the characteristics of drought events in river basins in terms of sustainable management. For this reason, index methods have been developed in order to define the characteristic features of drought events such as duration and severity. In the present study, meteorological and hydrological droughts of the Medar sub-basin in the Gediz basin were investigated by the most widely using standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI) and standardized runoff index (SRI) methods. Meteorological and hydrological droughts between 1971 and 2015, at monthly, 3 month, 6 month and 12 month time scales, were determined by using the meteorological data observed at Akhisar and Sarılar meteorological stations, which represent the basin, and the runoff values observed at the Medar Bridge over the Medar Stream. The characteristic features of droughts occurring in the relevant time periods are explained using Run theory. As a result of the study, the characteristic relationships of meteorological and hydrological droughts were determined.

___

  • [1] Kumanlioğlu, A. A., Fıstıkoğlu, O. 2019. Yukarı Gediz Havzası Yağışlarının Meteorolojik Kuraklık Analizleri. DEUFMD, 21(62), 509-523.
  • [2] Anonim, 2007. Extreme Agrimeteorologicalevents. Cag M-X Working Group., Genava.
  • [3] https://www.afad.gov.tr/afet-turleri Erişim tarihi:14.04.2022
  • [4] Ilgar, R., 2010. Çanakkale’de kuraklık durumu ve eğilimlerinin standartlaştırılmış yağış indisi ile belirlenmesi. Marmara Coğrafya Dergisi, 22, 183–204.
  • [5] BMÇMS, (1997). Birleşmiş Milletler Çölleşme ile Mücadele Sözleşmesi, Paris.
  • [6] Montaseri, M. and Amirataee, B., 2017. Comprehensive stochastic assessment of meteorological drought indices. Int. J. Climatol. 37: 998-1013.
  • [7] Wilhite DA, GlantzMH. 1985. Understanding the drought phenomenon: the role of definitions. Water Int. 10: 111–120.
  • [8] World Meteorological Organization (WMO) and Global Water Partnership (GWP), 2016: Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs). Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2. Geneva.
  • [9] Salehnıa, N., Alızadeh, A., Sanaeınejad, H., Bannayan, M., Zarrın, A., Hoogenboom, G.,2017. Estimation of meteorological drought indices based on AgMERRA precipitation data and station-observed precipitation data. Journal of Arid Land, 9(6): 797–809. https://doi.org/10.1007/s40333-017-0070-y
  • [10] Shahabfar, A. And Eitzinger, J., 2013. Spatio-temporal analysis of droughts in semi-arid regions by using meteorological drought indices. Atmosphere, 4, 94-112; http://doi:10.3390/atmos4020094
  • [11] Nagarajan, R. And Sreedhar, G., 2015. Micro-level drought vulnerability assessment using standardised precipitation index, standardised water-level index, Remote Sensing and GIS. ACRS 2015: The 36th Asian Conference on Remote Sensing, Quezon City, Philippines.
  • [12] Jang, S. H., Lee, J.-K., Oh, J. H., Jo, J. W., and Cho, Y., (2017). The Probabilistic Drought Forecast Based on the Ensemble Technique Using the Korean Surface Water Supply Index, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2017-163.
  • [13] Akşan, G. N. ve Bacanlı, Ü., G. 2021. Comparison of the meteorological drought indices according to the paraemeter(s) used in the Southeastern Anatolia Region, Turkey. Environ Res Tech, Vol. 4, No. 3, 230–243.
  • [14] Mondol, A. H., Ara, I., Chandra Das, S., 2017. Meteorological Drought Index Mapping in Bangladesh Using Standardized Precipitation Index Durüng 1981-2010. Advances in Meteorology, 1-17, DOI:10.1155/2017/4642060
  • [15] Kumanlıoglu, A.A., 2020. Hydrological Droughts and Runoff Trends of the Demirköprü Dam Reservoir Basin on Gediz River, Turkey. DEUFMD 22(66), 793-800.
  • [16] Kumanlioglu AA., 2020. Characterizing meteorological and hydrological droughts: A case study of the Gediz River Basin, Turkey. Meteorol Appl.;27:e1857. https://doi.org/10.1002/met.1857
  • [17] Wu, J.F., Chen, X.W., Yao, H.X., et al. 2017a. Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir. Journal of Hydrology, 551, 495–507.
  • [18] Wu, J., Liu, Z., Yao, H., Chen, X., Chen, X., Zheng, Y. and He, Y. 2018. Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought. Journal of Hydrology, 563, 726–736.
  • [19] McKee, T.B., Doeskin, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology, January 17–22. Boston, MA: American Meteorological Society, 179–184.
  • [20] Vicente-Serrano, SM., Begueria, S., Lopez-Moreno, JI., 2010. A multiscalar Drought İndex Sensitive To Global Warming: The Standardized Precipitaion Evapotranspiration İndex. J. Clim. 23:1696-1718.
  • [21] Penman, H.L. (1948) Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London, Series A, 193, 120–146.
  • [22] Monteith, J.L. (1965) Evaporation and environment. In: 19th Symposia of the Society for Experimental Biology, Vol. 19. Cambridge: University Press, pp. 205–234.
  • [23] Thornthwaite, C.W. (1948) An approach toward a rational classification of climate. Geographical Review, 38, 55–94.