Saman Takviyeli Yüksek Yoğunluklu Polietilen Kompozitlerin Mekanik Özellikleri ve Su Emme Kapasitelerindeki Değişimlerin İncelenmesi

Bu çalışmada, poliolefinler grubunun önemli bir üyesi olan yüksek yoğunluklu polietilen ile saman bitkisinden oluşan kompozitler üretilmiştir. Kompozit malzemeler, yüksek yoğunluklu polietilen içerisine saman takviyesi ağırlıkça %5, %10 ve %20 oranlarında takviye edilerek üretilmiştir. Bu karışımlar öncelikle mekanik olarak karıştırılmış daha sonra homojen bir karışım oluşturabilmek için 160 ila 180 oC sıcaklıklar arasında ekstrüzyondan geçirilmiştir. Ekstrüzyon sonrası elde edilen karışım önce soğutma havuzunda soğutulmuş daha sonra kırıcıdan geçirilerek granül hale getirilmiştir. Elde edilen bu granüller plastik enjeksiyon makinasında kalıplara basılarak standart test numuneleri üretilmiştir. Üretilen kompozitlerin takviye malzemesi oranı ile mekanik özelliklerindeki ve su emme kapasitelerindeki değişimler incelenmiş ve sonuçlar grafik ve tablo olarak verilmiştir. Kompozit malzemlerin çekme mukavemtleri, üç nokta eğilme mukavemetleri ve izod darbe dayanımları analiz edilmişdir. Malzemelerin çekme ve izod darbe dayanımları azalırken, eğilme mukavemetinde iyileşme gözlenmiştir.

Investigation of Changes in Mechanical Properties and Water Absorption Capacities of Straw Reinforced High Density Polyethylene Composites

In this study, composites consisting of high-density polyethylene, an important member of the polyolefins group, and straw plant were produced. Composite materials are produced by reinforcing straw into high-density polyethylene at 5%, 10% and 20% by weight. These mixtures were first mixed mechanically and then extruded between 160 and 180 oC temperatures in order to form a homogeneous mixture.. The mixture obtained after extrusion was first cooled in the cooling pool and then passed through the crusher and brought in granular form. These obtained granules were pressed into the molds in the plastic injection machine and standard test samples were produced. The variations in the mechanical properties and water absorption capacities of the produced composites with the reinforcement material ratio were examined and the results were given as graphics and tables. Tensile strength, three-point bending strength and izod impact strength of composite materials were analyzed. While the tensile and izod impact strengths of the materials decreased, an improvement in flexural strength was observed.

___

  • [1] Kismet, Y. 2012. Entwicklung eines Verfahrens für die Verwertung von Pulverlackrecyclaten, Technische Universtität Berlin, PhD Thesis, Berlin.
  • [2] Akier, A.H. 2011. Untersuchungen zum materialverhalten von rapsstroh-polypropylen compounds (Cilt. 73). Univerlagtuberlin.
  • [3] Doğan, A., Kısmet, Y. 2021. Gama Işımasının Kolza Takviyeli Polipropilen Kompozit Malzemenin Mekanik Özellikleri Üzerindeki Etkisi, Int J Pure Appl Sci, Cilt. 7, s. 490–499. DOI: 10.29132/ijpas.996361.
  • [4] Pervaiz, M., Sain, M.M. 2003. Carbon storage potential in natural fiber composites, Resour Conserv Recycl, Cilt. 39, s. 325–340. DOI: 10.1016/S0921-3449(02)00173-8.
  • [5] Roumeli, E., Terzopoulou, Z., Pavlidou E., ve diğ. 2015. Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites, J Therm Anal Calorim, Cilt. 121, s. 93–105. DOI: 10.1007/s10973-015-4596-y.
  • [6] Russo, P., Simeoli, G., Acierno, D., Lopresto, V. 2015. Mechanical properties of virgin and recycled polyolefin-based composite laminates reinforced with jute fabric, Polym Compos, Cilt. 36, s. 2022–2029. DOI: 10.1002/pc.23112.
  • [7] Oumer, A.N., Bachtiar, D. 2014. Modeling and experimental validation of tensile properties of sugar palm fiber reinforced high impact polystyrene composites, Fibers Polym, Cilt. 15, s. 334–339. DOI: 10.1007/s12221-014-0334-5.
  • [8] Jariwala, H., Jain, P. 2019. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications, J Reinf Plast Compos, Cilt. 38, s. 441–453. DOI: 10.1177/0731684419828524.
  • [9] Singh, S., Ramakrishna, S., Gupta, M.K. 2017. Towards zero waste manufacturing: A multidisciplinary review, J Clean Prod, Cilt. 168, s. 1230–1243. DOI: 10.1016/j.jclepro.2017.09.108.
  • [10] Kandas, H., Özdemir, O. 2021. Çam ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi, Dokuz Eylül Üniversitesi Mühendis Fakültesi Fen Ve Mühendis Derg, Cilt. 23, S. 147–155. DOI: 10.21205/deufmd.2021236713
  • [11] Nawang, R., Danjaji, I.D., Ishiaku, U.S., ve diğ. 2001. Mechanical properties of sago starch-filled linear low density polyethylene (LLDPE) composites, Polym Test, Cilt. 20, s. 167–172. DOI: 10.1016/S0142-9418(00)00018-0
  • [12] Olszewski, A., Kosmela, P., Piszczyk, L. 2021. Synthesis and characterization of biopolyols through biomass liquefaction of wood shavings and their application in the preparation of polyurethane wood composites, Eur J Wood Wood Prod, s. 1–18. DOI: 10.1007/s00107-021-01755-6
  • [13] Kenned, J.J., Sankaranarayanasamy, K., Binoj, J.S., Chelliah, S.K. 2020. Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites, Compos Sci Technol, Cilt. 185, s. 107890. DOI: 10.1016/j.compscitech.2019.107890
  • [14] Widnyana, A., Rian, I.G., Surata, I.W., Nindhia, T.G.T. 2020. Tensile Properties of coconut Coir single fiber with alkali treatment and reinforcement effect on unsaturated polyester polymer, Mater Today Proc, Cilt. 22, s. 300–305. DOI: 10.1016/j.matpr.2019.08.155
  • [15] Aruchamy, K., Subramani, S.P., Palaniappan, S.K., ve diğ. 2020. Study on mechanical characteristics of woven cotton/bamboo hybrid reinforced composite laminates, J Mater Res Technol, Cilt. 9, s. 718–726. DOI: 10.1016/j.jmrt.2019.11.013
  • [16] Ovalı, S., Sancak, E. 2020. Investigation of mechanical properties of jute fiber reinforced low density polyethylene composites, J Nat Fibers, s. 1–18. DOI: 10.1080/15440478.2020.1838999
  • [17] Fiore, V., Calabrese, L., Miranda, R., ve diğ. 2022. On the response of flax fiber reinforced composites under salt-fog/dry conditions: Reversible and irreversible performances degradation, Compos Part B Eng, Cilt. 230, s. 109535. DOI: 10.1016/j.compositesb.2021.109535
  • [18] Kısmet, Y., Dogan, A. 2022. Characterization of the mechanical and thermal properties of rape short natural-fiber reinforced thermoplastic composites, Iran Polym J, Cilt 31. s. 143-151. DOI: 10.1007/s13726-021-00988-9
  • [19] Saha, A., Kumar, S., Zindani, D. 2021. Investigation of the effect of water absorption on thermomechanical and viscoelastic properties of flax-hemp-reinforced hybrid composite, Polym Compos, Cilt. 42, s. 4497–4516. DOI: 10.1002/pc.26164
  • [20] Stelea, L., Filip, I., Lisa, G., ve diğ. 2022. Characterisation of Hemp Fibres Reinforced Composites Using Thermoplastic Polymers as Matrices, Polymers, Cilt. 14, s. 481. DOI: 10.3390/polym14030481
  • [21] García, E., Louvier-Hernández, J.F., Cervantes-Vallejo, F.J., ve diğ. 2021. Mechanical, dynamic and tribological characterization of HDPE/peanut shell composites, Polym Test, Cilt. 98, s. 107075. DOI: 10.1016/j.polymertesting.2021.107075
  • [22] Osman, M.A., Atallah, A., Suter, U.W. 2004. Influence of excessive filler coating on the tensile properties of LDPE–calcium carbonate composites, Polymer, Cilt. 45, s. 1177–1183. DOI: 10.1016/j.polymer.2003.12.020
  • [23] Khanam, P.N., AlMaadeed, M.A.A. 2015. Processing and characterization of polyethylene-based composites, Adv Manuf Polym Compos Sci, Cilt. 1, s. 63–79. DOI: 10.1179/2055035915Y.0000000002
  • [24] Torres, F.G., Cubillas, M.L. 2005. Study of the interfacial properties of natural fibre reinforced polyethylene, Polym Test, Cilt. 24, s. 694–698. DOI: 10.1016/j.polymertesting.2005.05.004
  • [25] Kijeńska, M., Kowalska, E., Palys B., Ryczkowski, J. 2010. Degradability of composites of low density polyethylene/polypropylene blends filled with rape straw, Polym Degrad Stab, Cilt 95, s. 536–542. DOI: 10.1016/j.polymdegradstab.2009.12.023
  • [26] Zou, P., Xiong, H., Tang, S. 2008. Natural weathering of rape straw flour (RSF)/HDPE and nano-SiO2/RSF/HDPE composites, Carbohydr Polym, Cilt. 73, s. 378–383. DOI: 10.1016/j.carbpol.2007.12.002
  • [27] Metin, G., Akyüz, Y., Emin, A. 2005. Mermer tozu/polyester kompozitlerde dolgu oranının mekanik özelliklere etkileri, Politek Derg, Cilt. 8, s. 271–274. DOI:
  • [28] Juhasz, J.A., Best, S.M., Brooks, R., ve diğ. 2004. Mechanical properties of glass-ceramic A–W-polyethylene composites: effect of filler content and particle size, Biomaterials, Cilt. 25, s. 949–955. DOI: 10.1016/j.biomaterials.2003.07.005.
  • [29] Luo, X., Li, J., Feng, J., ve diğ. 2013. Evaluation of distillers grains as fillers for low density polyethylene: Mechanical, rheological and thermal characterization, Compos Sci Technol, Cilt. 89, s.175–179. DOI: 10.1016/j.compscitech.2013.10.001
  • [30] International A (2014) Standard test method for tensile properties of plastics. ASTM international
  • [31] ASTM I (2007) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM D790-07
  • [32] Testing AAS for, Materials (2010) ASTM D570-98 (2010) e1: standard test method for water absorption of plastics.
  • [33] Bourell, D., Kruth, J.P., Leu, M., ve diğ. 2017. Materials for additive manufacturing, CIRP Ann, Cilt. 66, s. 659–681. DOI: 10.1016/j.cirp.2017.05.009
  • [34] Zhang, X., Liao, G., Jin, Q., ve diğ. 2008. On dry sliding friction and wear behavior of PPESK filled with PTFE and graphite, Tribol Int, Cilt. 41, s. 195–201. DOI: 10.1016/j.triboint.2007.08.003
  • [35] Yang, H.S., Kim, H.J., Park H.J., ve diğ. 2006. Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites, Compos Struct, Cilt. 72, s. 429–437. DOI: 10.1016/j.compstruct.2005.01.013
  • [36] Singh, S., Ramakrishna, S., Gupta, M.K. 2017. Towards zero waste manufacturing: A multidisciplinary review, J Clean Prod, Cilt. 168, s. 1230–1243. DOI: 10.1016/j.jclepro.2017.09.108
  • [37] Väisänen, T., Haapala, A., Lappalainen, R., Tomppo, L. 2016. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review, Waste Manag, Cilt. 54, s. 62–73. DOI: 10.1016/j.wasman.2016.04.037
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi