DAĞITILMIŞ ENERJİ ÜRETİM TESİSLERİ ENTEGRE EDİLMİŞ GÜÇ SİSTEMLERİNDE OPTİMUM KATILIM ORANININ BELİRLENMESİ

Bu çalışmada, dağıtılmış enerji üretim tesisleri (DEÜ) entegre edilmiş elektrik şebekelerinin daha güvenilir çalıştırılabilmesine ve yönetilebilmesine yardımcı olması noktasında bazı kurallar geliştirilebilmesi amacıyla üç farklı şebeke üzerinde farklı sayıdaki DEÜ tesislerinin optimum katılım oranlarının (KO) ve bağlanma noktalarının belirlenmesine yönelik analizler yapılmıştır. DEÜ entegre edilmiş şebekelerin detaylı bir analizi yapılmaksızın şebekeye rastgele dahil edilmesi şebekenin güvenilirliğinin ve veriminin azalmasına neden olabilmektedir. DEÜ konsepti her ne kadar şebeke kayıplarında azalma ve gerilim profillerinde iyileştirmeye yardımcı olsa da, mevcut iletim hatlarının kapasiteleri bazı KO seviyelerinde yetersiz kalabilmektedir. Bu nedenle, bu çalışmada şebeke kayıpları ve gerilimlerin yanı sıra mevcut hat kapasiteleri de analizlerde dikkate alınmıştır. Bu bağlamda, tek ve birden fazla DEÜ bağlantılarında bir eşik KO değerinin olup olmadığı araştırılmıştır. Optimizasyon sonuçları neticesinde, şebeke planlaması açısından bazı temel kuralların elde edilmesi amacıyla şebeke kayıpları minimize edilirken gerilim profili ve hat akışları IEEE test şebekeleri üzerinde gözlemlenmiştir

DETERMINATION OF OPTIMUM PENETRATION LEVEL IN THE DISTRIBUTED GENERATION INTEGRATED POWER SYSTEMS

In this study, the optimization of the penetration level and allocation of distributed generation (DG) in single- and multiple- DG concepts are investigated on three typical test networks in order to obtain more reliable DG-integrated power system and develop some rules to be used at network management centers. An improper integration of DG units, without detailed analysis, decreases the reliability and efficiency of power networks. Although DGs can decrease power loss and improve voltage profile, they can cause the congestion on transmission lines at some penetration levels. For this reason, line flows are also considered besides power loss and voltage profile in this paper. In this manner, a threshold penetration level is investigated by considering both single- and multiple- DG concepts. According to the results of optimization, voltage profiles and line flows are observed on the IEEE test networks while minimizing power loss in order to reveal some rules in terms of power system planning

___

  • Acharya N., Mahat P., Mithulananthan N. (2006): “An Analytical Approach for DG Allocation in Primary Distribution Network”, International Journal of Electrical Power and Energy Systems, Cilt 28, No. 10, s. 669-678.
  • Ackermann T., Andersson G., Söder L. (2001): “Distributed Generation: A Definition”, Electric Power Systems Research, Cilt 57, No. 3, s. 195-204.
  • Elnashar M. M., Shatshat R. E., Salama M. M. A. (2010): “Optimum Siting and Sizing of A Large Distributed Generator in a Mesh Connected System”, Electric Power System Research, Cilt 80, No. 6,s. 690-697.
  • Gözel T., Hocaoğlu M. H. (2009): “An Analytical Method for the Sizing and Siting of Distributed Generators in Radial Systems”, Electric Power System Research, Cilt 79, No. 6, s. 912-918.
  • Hedayati H., Nabaviniaki S. A., Akbarimajd A. (2008): “A Method for Placement of DG Units in Distribution Networks”, IEEE Transactions on Power Delivery, Cilt 23, No. 3, s. 1620-1628.
  • Hemdan N. G. A., Kurrat M. (2008): “Distributed Generation Location and Capacity Effect on Voltage Stability of Distribution Networks”, Aalborg, Annual IEEE Student Paper Conference.
  • Kazemi A., Sadeghi M. (2009): “A Load Flow based Method for Optimal Location of Dispersed Generation Units”, Seattle, IEEE PowerSystem Conference and Exposition.
  • Le A. D. T., Kashem M. A., Negnevitsky M., Ledwich G.(2005): “Minimising Voltage Deviation in Distribution Feeders by Optimising Size and Location of Distributed Generation”,Australia, Australasian Universities Power Engineering Conference.
  • Lee S. H., Park J. W. (2009): “Selection of Optimal Location and Size of Multiple Distributed Generations by Using Kalman Filter Algorithm”, IEEE Transactions on PowerSystems, Cilt 24, No. 3,s. 1393-1400.
  • Mashhour M., Golkar M. A., Moghaddas-Tafreshi S. M. (2009): “Optimal Sizing and Siting of Distributed Generation in Radial Distribution Network: Comparison of Unidirectional and Bidirectional Power Flow Scenario”, Bucharest, IEEE PowerTech Conference.
  • Niemi R., Lund P. D.(2010): “Decentralized Electricity System Sizing and Placement in Distribution Networks”, Applied Energy, Cilt 87, No. 6, s. 1865-1869.
  • Pepermans G., Driesen J., Haeseldonckx D., Belmans R., D’haeseleer W. (2005): “Distributed Generation: DeŞnition, BeneŞts and Issues”, Energy Policy, Cilt 33, No. 6, s. 787-798.
  • Porkar S., Poure P., Abbaspour-Tehrani-fard A., Saadate S. (2010): “Optimal Allocation of Distributed Generation Using A Two-stage Multi-objective Mixed-integer-nonlinear Programming”, European Transactions on Electrical Power, Cilt 21, No. 1,s. 1072- 1087.
  • Power System Test Case Archive, http://www.ee.washington.edu/research/pstca/, Erişim Tarihi: 20.06.2013.
  • Shayeghi H., Mohamadi M. (2009): “Multi-objective Fuzzy Model in Optimal Sitting and Sizing of DG for Loss Reduction”, International Journal of Electrical Power and Energy Systems Engineering, Cilt 2, No. 3,s. 145-150.
  • Shukla T. N., Singh S. P., Srinivasarao V., Naik K. B. (2010): “Optimal Sizing of Distributed GenerationPlaced on Radial Distribution Systems”, Electric Power Component and Systems, Cilt 38, No. 3, s. 260-274.
  • Sousa A. A., Torres G. L., Canizares C. A. (2011): “Robust Optimal Power Flow Solution Using Trust Region and Interior-Point Method”, IEEE Transactions on PowerSystem, Cilt 26, No. 2, s. 487-499.
  • Thong V. V., Belmans R. (2009): “Maximum Penetration Level of Distributed Generation with Safety Criteria”, European Transactions on Electrical Power, Cilt 20, No. 3, s. 367- 381.
  • Ugranlı F., Karatepe E. (2012a): “Long-Term Performance Comparison of Multiple Distributed Generation Allocations Using a Clustering-Based Method”, Electric Power Components and Systems, Cilt 40, No. 2, s. 195-218.
  • Ugranlı F., Karatepe E. (2012b): “Convergence of Rule-of-Thumb Sizing and Allocating Rules of Distributed Generation in Meshed Power Networks”, Renewable and sustainable energy reviews, Cilt 16, No. 1, s. 582-590.
  • Ugranlı F., Karatepe E. (2013): “Multiple-distributed Generation Planning Under Load Uncertainty and Different Penetration Level”, International Journal of Electrical Power and Energy Systems, Cilt 46, s. 132-144.
  • Wang C., Nehrir M. H. (2005): “Analytical Approaches for Optimal Placement of Distributed Generation Sources in PowerSystems”, IEEE Transactions on PowerSystems, Cilt 19, No. 4, s. 2068-2076.
  • Willis H. L. (2000): “Analytical Methods and Rules of Thumb for Modeling DG-Distribution Interaction”, Seattle, IEEE Power Engineering Society Summer Meeting.