CdSe Nanokristalleri ile Mikrokapsül Hazırlama ve Cr(VI) Gideriminde Kullanılması

Bu çalışmada, yüksek sıcaklıkta organometalik başlatıcılar ile ağır metal temelli CdSe nanokristalleri sentezlenmiş ve kitosan katkılı mikrokapsüllerin hazırlanması ile yeni bir nanokompozit mikrokapsül adsorban maddenin sulardan Cr(VI) gideriminde kullanılması amaçlanmıştır. Sentezlenen CdSe nanokristallerinin geçirimli elektron mikroskobu tekniği (TEM) ve X ışınları saçılım (XRD) ölçümleri ile yapısal analizleri yapılmıştır. Mikrokapsüllere ait adsorpsiyon kapasiteleri, başlangıç metal iyonu konsantrasyonları, pH, zaman ve adsorban dozunun adsorpsiyona etkileri Batch metoduna göre Cr(VI) iyonunun sulu çözeltilerden uzaklaştırılması araştırılmıştır. Cr(VI) metal-sorpsiyon işlemlerinde denge sorpsiyon izoterm eğrileri Freundlich ve Langmuir sorpsiyon izotermleri kullanılarak çizilmiş ve bu izotermlerden adsorpsiyon parametreleri hesaplanmıştır.

Preparation of Microcapsules with CdSe Nanocrystals and The Use of Microcapsules for Cr (VI) Removal From Water

In this work, CdSe nanocrystals based on heavy metals are synthesized with organometallic precursors at high temperature and it is aimed to use a new nanocomposite microcapsule adsorbent material for Cr (VI) removal from water by preparation of chitosan-doped microcapsules. Structural analyzes of synthesized CdSe nanocrystals were performed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. The adsorption capacities of the microcapsules, initial metal ion concentrations, pH, time and adsorption effects of adsorbent dose were investigated in order to remove Cr (VI) ion from aqueous solutions according to the Batch method. In Cr (VI) metal-sorption processes, equilibrium sorption isotherm curves were drawn by using Freundlich and Langmuir sorption isotherms and the adsorption parameters were calculated from these isotherms. 

___

  • [1] Sarin, V., Pant, K. K., 2006. Removal of Chromium from Industrial Waste by Using Eucalyptus bark, Bioresource Technology, Cilt. 97, s. 15–20. DOI: 10.1016/j.biortech.2005.02.010.
  • [2] Banerjee S.S., Jayaram R.V., Joshi M.V., 2003. Removal of nickel (II) and zinc (II) from wastewater using fly ash and impregnated fly ash, Separation Science and Technology, Cilt. 38, s. 1015-1032. DOI: 10.1081/SS-120018121.
  • [3] Ho, Y., Mckay, G., 1999. Pseudo-Second Order Model For Sorption Processes, Process Biochem, Cilt. 34, s. 451-465. DOI: 10.1016/S0032-9592(98)00112-5.
  • [4] Dakiky, M., Khamıs, M., Manassra, A., Mer’eb, M., 2002. Selective Adsorption Of Chromium (VI) In Industrial Wastewater Using Low-Cost Abundantly Available Adsorbents, Advances In Environ. Res, Cilt. 6, s. 533-540. DOI: 10.1016/S1093-0191(01)00079-X.
  • [5] Arslan, G., 2004. Bazı Polimerik Sorbentlerin Toksik Metaller ile Sorpsiyon, İyon Değiştirme ve Şelatlaşma Özelliklerinin İncelenmesi, Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Konya.
  • [6] Pehlivan, E., Arslan, G., 2007. Batch Removal of Chromium(VI) from Aqueous Solution by Turkish Brown Coals, Bioresource Technology, Cilt. 98, s. 2836-2845. DOI: 10.1016/j.biortech.2006.09.041.
  • [7] Arslan, G., Pehlivan, E., 2008. Uptake of Cr+3 from Aqueous Solution by Lignite-Based Humic Acids, Bioresource Technology, Cilt. 99, s. 7597-7605. DOI: 10.1016/j.biortech.2008.02.007.
  • [8] Monllor, P., Bonet, M. A., & Cases, F., 2007. Characterization of the behaviour of flavour microcapsules in cotton fabrics, European Polymer Journal, Cilt. 43, s. 2481-2490. DOI: 10.1016/j.eurpolymj.2007.04.004.
  • [9] Patel, R. R., & Patel, J. K., 2010. Novel technologies of oral controlled release drug delivery system, Systematic Reviews in Pharmacy,Cilt. 1, s. 128-132. DOI: 10.4103/0975-8453.75054.
  • [10] Estevinho, B.N., Rocha, F., Santos, L., Alves, A., 2013. Microencapsulation with chitosan by spray drying for industry applications, A review, Trends in Food Science & Technology, Cilt. 31, s. 138-155. DOI: 10.1016/j.tifs.2013.04.001
  • [11] De Azeredo H.M.C., 2005. Encapsulac¸~ao: aplicac¸~ao _a tecnologia de alimentos, Alimentos e Nutric¸~ao Araraquara, s. 89-97.
  • [12] Aghbashlo, M., Mobli, H., Rafiee, S., & Madadlou, 2012. Energy and exergy analyses of the spray drying process of fish oil microencapsulation, Biosystems Engineering, Cilt. 111, s. 229-241. DOI: 10.1080/07373930802412231.
  • [13] Gharsallaoui A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R., 2007. Applications of spray-drying in microencapsulation of food ingredients: an overview, Food Research International, Cilt. 40, s. 1107-1121. DOI: 10.1016/j.foodres.2007.07.004
  • [14] Gouin S., 2004. Microencapsulation: industrial appraisal of existing technologies and trends, Trends in Food Science & Technology, Cilt. 15, s. 330-347. DOI: 10.1016/j.tifs.2003.10.005
  • [15] Muzzarelli R.A.A., Boudrant J., Meyer D., Manno N., DeMarchis M., Paoletti M.G., 2012. Current Views on Fungal Chitin/Chitosan, Human Chitinases, Food Preservation, Glucans, Pectins and Inulin: A Tribute to Henri Braconnot, Precursor of the Carbohydrate Polymers Science, on the Chitin Bicentennial, Carbohydrate Polymers, Cilt. 87, sp. 995-1012. DOI: 0.1016/j.carbpol.2011.09.063
  • [16] Hu C.Y., Lo S.L., Chang C.L., Chen F.L., Wu Y.D., Ma J.L., 2013. Treatment of Highly Turbid Water Using Chitosan and Aluminum Salts, Separation and Purification Technology, Cilt. 104, s. 322-326. DOI: 10.1016/j.seppur.2012.11.016
  • [17] Ahmad A.L., Sumathi S., Hameed B.H., 2005. Residual Oil and Suspended Solid Removal Using Natural Adsorbents Chitosan, Bentonite and Activated Carbon: A Comparative Study, Chemical Engineering Journal, Cilt. 108, s. 179-185. DOI: 10.1016/j.cej.2005.01.016
  • [18] Ngah W.S.W, Teong L.C., Hanafiah M.A.K.M., 2011. Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites, A Review, Carbohydrate Polymers, Cilt. 83, s. 1446-56. DOI: 10.1016/j.carbpol.2010.11.004
  • [19] Zemmouria H., Drouiche M., Sayeh A., Lounici H., Mameri N., 2013. Chitosan Application for Treatment of Beni- Amrane’s Water Dam, Energy Procedia, Cilt. 36, s. 558-64. DOI: 10.1016/j.egypro.2013.07.064
  • [20] Zhao, D., He, Z., Chan, W.H., and Choi, M.M.F., 2009. Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-L-cysteine Via Hydrothermal Method, J. Phys. Chem. C, Cilt. 113, s.1293–1300. DOI: 10.1021/jp808465s
  • [21] Wang, R., Calvignanello, O., Ratcliffe, C.I., Wu, X., Leek, D.M., Zaman, Md. B., Kingston, D., Ripmeester, J.A., and Yu, K., 2009. Homogeneously-Alloyed CdTeSe Single-Sized Nanocrystals with Bandgap Photoluminescence, J. Phys. Chem. C, Cilt. 113, s. 3402–3408. DOI: 10.1021/jp810325z
  • [22] Alivisatos, A.P., 1996. Semiconductorclusters, nanocrystals, and quantumdots, Science, Cilt. 271, s. 933-937. DOI: 10.1126/science.271.5251.933.
  • [23] He, R., Gu, H., 2006. Synthesis and characterization of mondispersed CdSe nanocrystals at lower temperature, Colloids and Surfaces A: Physicochem. Eng. Aspects, Cilt. 272, s. 111–116. DOI: 10.1016/j.colsurfa.2005.07.017
  • [24] Brus, L. E., 1990. Semiconductor crystallites, Acc. Chem. Res., Cilt. 23, ps 183-188. DOI: 10.1021/ar00174a003
  • [25] Tian, J. , Liu, R. , Zhao, Y. , Xu, Q. , Zhao, S., 2009. Controllable synthesis and cell-imaging studies on CdTe quantum dots together capped by glutathione and thioglycolic acid, Journal of Colloid and Interface Science, Cilt. 336, s. 504-509. DOI: 10.1016/j.jcis.2009.04.064
  • [26] Deng, Z., Zhang, Y., Yue, J., Tang, F., and We, Q., 2007. Green and Orange CdTe Quantum Dots as Effective pH-Sensitive Fluorescent Probes for Dual Simultaneous and Independent Detection of Viruses, J. Phys. Chem. B, Cilt. 111, s. 12024-12031. DOI: 10.1021/jp074609z
  • [27] Han, B., Yuan, J., and Wang, E., 2009. Sensitive and Selective Sensor for Biothiols in the Cell Based on the Recovered Fluorescence of the CdTe Quantum Dots−Hg(II) System, Anal. Chem., Cilt. 81, s. 5569-5573. DOI: 10.1021/ac900769h
  • [28] Kumar, S.G. and Rao, K.S.R.K., 2014. Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects, Energy Environ. Sci., Cilt. 7, s. 45-102. DOI: 10.1039/C3EE41981A
  • [29] Cui, R., Pan, H.-C., Zhu, J.-J., and Chen, H.-Y., 2007. Versatile Immunosensor Using CdTe Quantum Dots as Electrochemical and Fluorescent Labels, Anal. Chem., Cilt. 79, s. 8494-8501. DOI: 10.1021/ac070923d
  • [30] Al-Salim, N., Young, A.G., Tilley, R.D., McQuillan, A.J., and Xia , J., 2007. Synthesis of CdSeS Nanocrystals in Coordinating and Noncoordinating Solvents: Solvent’s Role in Evolution of the Optical and Structural Properties, Chem. Mater., Cilt. 19, s. 5185-5193. DOI: 10.1021/cm070818k
  • [31] Yu, X., Zhao, Z., Nie, W., Deng, R., Liu, S., Liang, R., Zhu, J., and Ji, X., 2011. Biodegradable Polymer Microcapsules Fabrication through a Template-Free Approach, Langmiur, Cilt. 27, s. 10265–10273. DOI: 10.1021/la201944s
  • [32] Tuinenga, C., Jasinski, J., Iwamoto, T., and Chikan, V., 2008. In Situ Observation of Heterogeneous Growth of CdSe Quantum Dots: Effect of Indium Doping on the Growth Kinetics, Acs Nano, Cilt. 2, s. 1411-1421. DOI: 10.1021/nn700377q
  • [33] Sargın, M., Kaya, G. Arslan, T. Baran, T. Ceter, 2015. Preparation and characterisation of biodegradable pollen–chitosan microcapsules and its application in heavy metal removal, Bioresource Technology, Cilt. 177, s. 1-7. DOI: 10.1016/j.biortech.2014.11.067
  • [34] Wang, P., Li, D., Chen, J., Zhang, X., Xian, J., Yang, X., Zheng, X., Li, X., Shao, Y., 2014. A novel and green method to synthesize CdSe quantum dots-modified TiO2 and its enhanced visible light photocatalytic activity, Applied Catalysis B: Environmental, Cilt. 160–161, s. 217-226. DOI:doi.org/10.1016/j.apcatb.2014.05.032
  • [35] Yu, X.Y., Lei, B. X., Kuang, D. B., Su, C. Y., 2012. High performance and reduced charge recombination of CdSe/CdS quantum dot-sensitized solar cells, J. Mater. Chem., Cilt. 22, s. 12058-12063. DOI: 10.1039/C2JM16738G
  • [36] Nakano, Y., Takeshita, K., Tsutsumi, T., 2001. Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel, Water Research cilt. 5(2), s. 496-500, DOI:10.1016/S0043-1354(00)00279-7
  • [37] Arslan, G., Edebali, S., Pehlivan, E., 2010. Physical and chemical factors affecting the adsorption of Cr(VI) via humic acids extracted from brown coals, Desalination cilt. 255, s. 117–123, DOI:10.1016/j.desal.2010.01.006
  • [38] Kocak, N., Sahin, M., Arslan, G., Ucan, H.I., 2012. Synthesis of Crosslinked Chitosan Possessing Schiff Base and Its Use in Metal Removal, Journal of Inorganic and Organometallic Polymers and Materials cilt. 22, s. 166-177, DOI 10.1007/s10904-011-9509-3
  • [39] Pehlivan, E., Altun, T., 2008. Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell, Journal of Hazardous Materials cilt. 155, s., 378-384, DOI:10.1016/j.jhazmat.2007.11.071
  • [40] Pehlivan, E., Cetin, S., 2009. Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV–visible spectrophotometer, Journal of Hazardous Materials cilt. 163, s. 448–453, DOI:10.1016/j.jhazmat.2008.06.115