Akustik Işıma Kuvvetiyle Milimetre Boyutundaki Katı Parçacıkların Tuzaklanması ve Ayrıştırılması

Akustik ışıma kuvvetlerinden faydalanarak hava ortamında mm boyutundaki parçacıkların tuzaklanması ve manipülasyonu son zamanlarda yoğun ilgi gören çalışma alanlarından biridir. İki boyutlu fononik kristallerin çizgisel kusur durumları ile akustik ışıma kuvvetinden faydalanılarak havada mm boyutunda katı parçacıkların akustik metamalzeme mercekler ile manipülasyonu ve boyutlarına göre ayrıştırılması sayısal hesaplamalar ile gösterilmiştir. Bu yapılırken, Sonlu Elemanlar Yöntemiyle simülasyon hesabı yapılarak fononik kristallerin band yapıları elde edilmiştir. Çalışmada iki boyutlu fononik kristal ile oluşturulan bir dairesel halka çınlaçta yerçekimi ve akustik ışıma kuvvetlerinin birlikte etkisi ile küresel parçacıkların dairesel yörüngede hareketi sağlanmıştır. Hesaplamalarda 0.25 mm, 0.4 mm ve 0.55 mm çaplı polistiren küreciklerin hareketi t=0, 50, 100, 150, 200 ve 400 ms deki konumları incelenmeştir. Bütün parçacıklar dairesel düğüm çizgisini izleyerek belirtilen sürelerde yörüngenin yaklaşık olarak ¼, ½, ¾ ve 1 oranındaki kısımlarını kat etmişlerdir. t=400 ms anında 0.55 mm çaplı parçacık yaklaşık olarak iki turu tamamlarken, diğer parçacıklar sürüklenme kuvvetinden dolayı çizgisel hızlarını kaybetmekte ve düğüm çizgisinin en alt noktasında ayrışarak tuzaklanmaktadır.

Trapping and Separation of Solid Particles with the Size of Millimeters by Acoustic Radiation Force

Trapping and manipulating mm-sized particles in the air by utilizing acoustic radiant forces are one of the fields of study that have recently attracted great interest. By using the linear defect states of the two-dimensional phononic crystals and the acoustic radiation force, the manipulation of the mm-sized solid particles in the air with acoustic metamaterial lenses and their separation according to their size have been shown by numerical calculations. While doing this, the band structures of the phononic crystals were obtained by simulation calculation with the Finite Element Method. In the study, the movement of spherical particles in a circular orbit was ensured by the combined effect of gravity and acoustic radiation forces in a circular ring resonant formed with a two-dimensional phononic crystal. The calculations examined the motion of the 0.25 mm, 0.4 mm and 0.55 mm diameter polystyrene spheres and their positions at t=0, 50, 100, 150, 200, and 400 ms. All the particles followed the circular nodal line and traversed approximately ¼, ½, ¾, and 1 part of the orbit in the indicated times. At t=400 ms, the 0.55 mm diameter particle completes approximately two turns, while the other particles lose their linear velocity due to the drag force and are trapped at the lowest point of the nodal line.

___

  • [1] Ding X, Li P, Lin S-CS, Stratton ZS, Nama N, Guo F, et al. 2013. Surface acoustic wave microfluidics. Lab on a Chip, 13, 3626-49. DOI: 10.1039/C3LC50361E
  • [2] Yeo LY, Friend JR. 2014. Surface acoustic wave microfluidics. Annual Review of Fluid Mechanics, 46, 379-406. DOI: 10.1146/annurev-fluid-010313-141418
  • [3] Wixforth A. 2003. Acoustically driven planar microfluidics. Superlattices and Microstructures, 33, 389-96. DOI: 10.1016/j.spmi.2004.02.015
  • [4] Shi J, Mao X, Ahmed D, Colletti A, Huang TJ. 2008. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab on a Chip, 8, 221-3. DOI: 10.1039/B716321E
  • [5] Shi J, Huang H, Stratton Z, Huang Y, Huang TJ. 2009. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip, 9, 3354-9. DOI: 10.1039/B915113C
  • [6] Franke T, Abate AR, Weitz DA, Wixforth A. 2009. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab on a Chip, 9, 2625-7. DOI: 10.1039/B906819H
  • [7] Yeo LY, Friend JR. 2009. Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics, 3, 012002. DOI: 10.1063/1.3056040
  • [8] Ai Y, Sanders CK, Marrone BL. 2013. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Analytical Chemistry, 85, 9126-34. DOI: 10.1021/ac4017715
  • [9] Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang P-H, et al. 2015. Acoustic separation of circulating tumor cells. Proceedings of the National Academy of Sciences, 112, 4970-5. DOI: 10.1073/pnas.1504484112
  • [10] Lee K, Shao H, Weissleder R, Lee H. 2015. Acoustic purification of extracellular microvesicles. ACS Nano, 9, 2321-7. DOI: 10.1021/nn506538f
  • [11] Whymark R. 1975. Acoustic field positioning for containerless processing. Ultrasonics, 13, 251-61. DOI: 10.1016/0041-624X(75)90072-4
  • [12] Wu J. 1991. Acoustical tweezers. The Journal of the Acoustical Society of America, 89, 2140-3. DOI: 10.1121/1.400907
  • [13] Polychronopoulos S, Memoli G. 2020. Acoustic levitation with optimized reflective metamaterials. Scientific Reports, 10, 1-10. DOI: 10.1038/s41598-020-60978-4
  • [14] Tsujino S, Tomizaki T. 2016. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature. Scientific Reports, 6, 1-9. DOI: 10.1038/srep25558
  • [15] Brandt E. 2001. Suspended by sound. Nature, 413, 474-5. DOI: 10.1038/35097192
  • [16] Lee J, Teh S-Y, Lee A, Kim HH, Lee C, Shung KK. 2009. Single beam acoustic trapping. Applied Physics Letters, 95, 073701. DOI: 10.1063/1.3206910
  • [17] Silva GT, Baggio AL. 2015. Designing single-beam multitrapping acoustical tweezers. Ultrasonics, 56, 449-55. DOI: 10.1016/j.ultras.2014.09.010
  • [18] Baresch D, Thomas J-L, Marchiano R. 2016. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Physical Review Letters, 116, 024301. DOI: 10.1103/PhysRevLett.116.024301
  • [19] Seah SA, Drinkwater BW, Carter T, Malkin R, Subramanian S. 2014. Correspondence: Dexterous ultrasonic levitation of millimeter-sized objects in air. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61, 1233-6. DOI: 10.1109/TUFFC.2014.3022
  • [20] Andrade MA, Bernassau AL, Adamowski JC. 2016. Acoustic levitation of a large solid sphere. Applied Physics Letters, 109, 044101. DOI: 10.1063/1.4959862
  • [21] Marston PL. 2006. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. The Journal of the Acoustical Society of America, 120, 3518-24. DOI: 10.1121/1.2361185
  • [22] Zhang L, Marston PL. 2013. Optical theorem for acoustic non-diffracting beams and application to radiation force and torque. Biomedical Optics Express, 4, 1610-7. DOI: 10.1364/BOE.4.001610
  • [23] Choe Y, Kim JW, Shung KK, Kim ES. 2011. Microparticle trapping in an ultrasonic Bessel beam. Applied Physics Letters, 99, 233704. DOI: 10.1063/1.3665615
  • [24] Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D. 2013. Acoustophoretic contactless transport and handling of matter in air. Proceedings of the National Academy of Sciences, 110, 12549-54. DOI: 10.1073/pnas.1301860110
  • [25] Foresti D, Poulikakos D. 2014. Acoustophoretic contactless elevation, orbital transport and spinning of matter in air. Physical Review Letters, 112, 024301. DOI: 10.1103/PhysRevLett.112.024301
  • [26] Marzo A, Seah SA, Drinkwater BW, Sahoo DR, Long B, Subramanian S. 2015. Holographic acoustic elements for manipulation of levitated objects. Nature Communications, 6, 1-7. DOI: 10.1038/ncomms9661
  • [27] Bjelobrk N, Foresti D, Dorrestijn M, Nabavi M, Poulikakos D. 2010. Contactless transport of acoustically levitated particles. Applied Physics Letters, 97, 161904. DOI: 10.1063/1.3504191
  • [28] Koyama D, Nakamura K. 2010. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57, 1152-9. DOI: 10.1109/TUFFC.2010.1527
  • [29] Kaya OA, Korozlu N, Trak D, Arslan Y, Cicek A. 2019. One-dimensional surface phononic crystal ring resonator and its application in gas sensing. Applied Physics Letters, 115, 041902. DOI: 10.1063/1.5090592
  • [30] Cicek A, Gungor T, Kaya OA, Ulug B. 2015. Guiding airborne sound through surface modes of a two-dimensional phononic crystal. Journal of Physics D: Applied Physics, 48, 235303. DOI: 10.1088/0022-3727/48/23/235303
  • [31] Rongrong W, Xiaozhou L, Jiehui L, Xiufen G. Calculation of acoustical radiation force on microsphere by spherically-focused source. Ultrasonics, 54, 7. DOI: 10.1016/j.ultras.2014.05.005
  • [32] Korozlu N, Kaya OA, Cicek A, Ulug B. 2018. Acoustic Tamm states of three-dimensional solid-fluid phononic crystals. The Journal of the Acoustical Society of America, 143, 756-64. DOI: 10.1121/1.5023334
  • [33] Cicek A, Adem Kaya O, Yilmaz M, Ulug B. 2012. Slow sound propagation in a sonic crystal linear waveguide. Journal of Applied Physics, 111, 013522. DOI: 10.1063/1.3676581
  • [34] Gor'kov LP. On the forces acting on a small particle in an acoustical field in an ideal fluid. Soviet Physics Doklady, 1962. p. 773-775.
  • [35] Bruus H. 2012. Acoustofluidics 7: The acoustic radiation force on small particles. Lab on a Chip, 12, 1014-21. DOI: 10.1039/C2LC21068A
  • [36] Shi J, Yazdi S, Lin S-CS, Ding X, Chiang I-K, Sharp K, et al. 2011. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip, 11, 2319-24. DOI: 10.1039/C1LC20042A
  • [37] Korozlu N, Kaya O, Cicek A, Ulug B. 2019. Self-collimation and slow-sound effect of spoof surface acoustic waves. Journal of Applied Physics, 125, 074901. DOI: 10.1063/1.5061770
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi