DEĞİŞİK YÜK SENARYOLARINDA GEMİ ÇEVRESEL, SOSYAL VE MALİYET ANALİZİ

Tek seferde çok büyük yükler taşıma kapasitesine sahip nakliye araçları olan gemiler, dünya ticaretinin belkemiğidir. Gemiler, dünyadaki toplam ticaretin % 90 kadarını oluştursa da kullandıkları yakıt ve makineler nedeniyle büyük miktarda emisyon oluşumuna yol açarlar. Bu çalışmada İskenderun-Şangay arasında belli bir miktar yükün farklı taşıma kapasitelerine sahip beş adet gemiyle ayrı ayrı taşındığı varsayılmış ve bu yolculuklar sonucunda oluşan emisyon miktarları, bu emisyonların sosyal ve yakıt maliyetleri, gemilerin bu yolculuklardan elde ettikleri gelir ve net kazançlar ile sosyal kayıplar hesaplanmıştır. Yapılan hesaplamalar sonucunda yükün büyük tek bir gemi tarafından taşınmasının hem emisyon üretimi hem de maliyet açısından en mantıklı senaryo olduğu bulunmuştur. Elde edilen bulgulara göre yükün tek gemiyle taşınması sırasında toplam 8.418,32 t emisyon oluşmakta, bu emisyonlardan dolayı toplam $ 17.008.992,91 civarında sosyal maliyet oluşacağı hesaplanmıştır. Aynı yolculuktaki net kazanç yaklaşık olarak $ 3.772.487,68 şeklinde hesaplanmış olup sosyal maliyet de hesaba katıldığında yine en az sosyal kayıp tek gemiyle yapılan seferde $ 4.977.503,13 olarak bulunmuştur. Son olarak, en iyi senaryoyu üreten gemi için ile gemi ana makinesinin HFO kullandığı varsayılarak yakıt türünün MDO olarak değiştirilmesinin maliyeti ve sosyal kazancı hesaplanmıştır. Bu hesaba göre yakıt değişimi dolayısıyla üretilen emisyon miktarı 7.897,83 t, sosyal maliyet $ 15.480.435,82 düzeyine inmiştir. Net kazanç $ 2.883.636,66 olarak hesaplanırken sosyal kayıp ise  $ 3.448.947,04 seviyesine kadar gerilemiştir

SHIP ENVIRONMENTAL, SOCIAL AND COST ANALYSIS FOR VARIOUS LOAD SCENARIOS

Although ships constitute up to 90 % of the total trade in the world, they cause a large amount of emissions due to the fuel and engine systems. In this study, it was assumed that a certain amount of cargo was transported separately by five ships with different carrying capacities between Iskenderun and Shanghai. Then, emission amounts, social and fuel costs of these emissions, net profit of the ships and social losses were calculated. As a result of the calculations, it was found that transporting the cargo by a single large ship is the most logical scenario in terms of both emission production and cost. The results also show that a total of 8.418,32 t emission is generated during the transportation of the cargo by the single vessel and it is estimated that the total social costs will be generated at around $ 17.008.992,91. The net profit for the same trip was calculated as $ 3.772.487,68, and when the social cost was taken into consideration, the minimum loss was found to be $ 4.977.503,13. Finally, the cost and social benefits of fuel switching from HFO to MDO were also calculated. According to this calculation, the amount of the emissions produced decreased to 7.897,83 t and to $ 15.480.435,82, respectively. The net profit was calculated as $ 2.883.636,66 and the social loss decreased to $ 3.448.947,04.

___

  • Andreoni, V., Miola, A.ve Peujo, A. (2008). Cost effectiveness analysis of the emission abatement in the shipping sector emissions. Italy: European Commission Joint Research Centre, Institute for Environment and Sustainability. Bal Beşikçi, E., Arslan, O., Turan, O. ve Ölçer, A.İ. (2016). An artificial neural network based decision support system for energy efficient ship operations. Computers & Operations Research, 66, 393-401. Bektaş, T., Ehmke, J.F., Psaraftis, H.N. ve Puchinger, J. (2019). The role of operational research in green freight transportation. European Journal of Operational Research, 3(1), 807-823. Bentin, M., Zastrau, D., Schlaak, M., Freye, D., Elsner, R. ve Kotzur, S. (2016). A new routing optimization tool-influence of wind and waves on fuel consumption of ships with and without wind assisted ship propulsion systems. Transportation Research Procedia, 14, 153-162. Bilgili, L. (2018). Gemi yaşam döngüsünde operasyonel gaz emisyonlarının makine öğrenmesi yöntemiyle tahmini, Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul. Bilgili, L. ve Çelebi, U.B. (2018). Developing a new green ship approach for flue gas emission estimation of bulk carriers. Measurement, 120, 121-127. Corbett, J.J. ve Köhler, H.W. (2003). Updated emissions from ocean shipping. Journal of Geophysical Research, 108, D20. Corbett, J.J., Fischbeck, P.S.ve Pandis, S.N. (1999). Global nitrogen and sulfur inventories for oceangoing ships. Journal of Geophysical Research, 104, D3:3457-3470. Deniz, C. ve Durmuşoğlu, Y. (2008). Estimating shipping emissions in the region of the Sea of Marmara. Science of the Total Environment, 390, 255-261. Dragović, B., Tzannatos, E., Tselentis, V., Meštrović, R. ve Škurić, M. (2015). Ship emissions and their externalities in cruise ports. Transportation Research Part D, 61(B), 289-300. Endresen, Ø., Sørgård, E., Behrens, H.L., Brett, P.O. ve Isaksen, I.S.A. (2007). A historical reconstruction of ships’ fuel consumption and emissions. Journal of Geophysical Research, 112, D12301. Eyring, V., Isaksen, I.S.A., Berntsen, T., Collins, W.J., Corbett, J.J., Endresen, O., Grainger, R.G., Moldanova, J., Schlager, H., Stevenson, D.S. (2010). Transport impacts on atmosphere and climate: Shipping, Atmospheric Environment, 44, 4735-4771. Eyring, V., Köhler, H.W., Lauer, A. ve Lemper, B. (2005b). Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research, 110, D17306. Eyring, V., Köhler, H.W., van Aardenne, J. ve Lauer, A. (2005a). Emission from international shipping: 1. The last 50 years. Journal of Geophysical Research, 110, D20. Gallagher, K.P. (2005). International trade and air pollution: Estimating the economic costs of air emissions from waterborne commerce vessels in the United States. Journal of Environment Management, 77, 99-103. Grifoll, M., Martorell, L., la Castells, M. ve de Osés, F.X.M. (2018). Ship weather routing using pathfinding algorithms: the case of Barcelona-Palma de Mallorca, Transportation Research Procedia, 33, 299-306. IMO (2000). Study of Greenhouse Gas Emissions from Ships, Final Report to the International Maritime Organization, Norwegian Marine Technology Research Institute-MARINTEK, Trondheim, Norveç. IMO (2009). Second IMO GHG Study, Londra, Birleşik Krallık. IMO (2015). Third IMO Greenhouse Gas Study, Executive Summary and Final Report, Londra, Birleşik Krallık. Jalkanen, J.P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J. ve Stipa, T. (2012). Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmospheric Chemistry and Physics, 12, 2641-2659. Johansson, L., Jalkanen, J.P. ve Kukkonen, J. (2017). Global Assessment of Shipping Emissions in 2015 on a High Spatial and Temporal Resolution. Atmospheric Environment, 167:403-415. Kalli, J. ve Tapaninen, U. (2008). Externalities of Shipping in the Gulf of Finland until 2015, University of Turku, ISBN: 978-951-29-3779-0, ISSN: 1456-1816. Kesgin, U. ve Vardar, N. (2001). A study on exhaust gas emissions from ships in Turkish Straits. Atmospheric Environment, 35, 1863-1870. Kosmas, O.T. ve Vlachos, D.S. (2012). Simulated annealing for optimal ship routing. Computers & Operations Research, 39(3), 576-581. Lee, S.M., Roh, M.I., Kim, K.S., Jung, H. ve Park, J.J. (2018). Method for a simultaneous determination of the path and the speed for ship route planning problems. Ocean Engineering, 157, 301-312. Lonati, G., Cernuschi, S. ve Sidi, S. (2010). Air quality impact assessment of at-berth ship emissions: Case-study for the project of a new freight port. Science of the Total Environment, 409 (1), 192-200. Maragkogianni, A. ve Papaefthimiou, S. (2015). Evaluating the social cost of cruise ships air emissions in major ports of Greece. Transportation Research Part D, 36, 10-17. McArthur, D.P. ve Osland, L. (2013). Ships in a city harbour: An economic valuation of atmospheric emissions. Transportation Research Part D, 21, 47-52. Moldanová, J., Fridell, E., Petzold, A., Jalkanen, J.P. ve Samaras, Z. (2010). Emission factors for shipping-final data for use in TRANSPHORM emission inventories, transport related air pollution and health impacts-integrated methodologies for assessing particulate matter. Moreno-Gutiérrez, J., Durán-Grados, V., Uriondo, Z. ve Ángel-Llamas, J. (2012). Emission-factor uncertainties in maritime transport in the Strait of Gibraltar, Spain. Atmospheric Measurement Techniques, 5, 5953-5991. Song, S. (2014). Ship emissions inventory, social cost and eco-efficiency in Shangai Yangshan Port. Atmospheric Environment, 82, 288-297. Streets, D.G., Carmichael, G.R. ve Arndt, R.L. (1997). Sulfur dioxide emissions and sulfur deposition from international shipping in Asian Waters. Atmospheric Environment, 31 (10), 1573-1582. Streets, D.G., Guttikunda, S.K. ve Carmichael, G.R. (2000). The growing contribution of sulfur emissions from ships in Asian Waters, 1988-1995. Atmospheric Environment, 34, 4425-4439. Trozzi, C. (2010). Emission estimate methodology for maritime navigation. In Proceedings of 19. International Emission Inventory Conference. 27-30 Eylül, San Antonio, ABD. Tzannatos, E. (2010a). Ship emissions and their externalities for Greece. Atmospheric Environment, 44, 2194-2202. Tzannatos, E. (2010b). Ship emissions and their externalities for the Port of Piraeus-Greece. Atmospheric Environment, 44, 400-407. Vettor, R. ve Soares, C.G. (2016). Development of a ship weather routing system. Ocean Engineering, 123, 1-14. Wahlström, J., Karvesenoja, N. ve Porvari, P. (2006). Ship emissions and technical emission reduction potential in the Northern Baltic Sea, Reports of Finnish Environment Institute, Helsinki, Finlandiya. Walther, L., Rizvanolli, A., Wendebourg, M. Ve Jahn, C. (2016). Modeling and optimization algorithms in ship weather routing. International Journal of e-Navigation and Maritime Economy, 4, 31-45. Wang, K., Yan, X., Yuan, Y., Jiang, X., Lin, X. ve Negenborn, R.R. (2018). Dynamic optimization of ship energy efficiency considering time-varying environmental factors. Transportation Research Part D, 62, 685-698. Wen, M., Pacino, D., Kontovas, C.A. ve Psaraftis, H.N. (2017). A multiple ship routing and speed optimization problem under time, cost and environmental objectives. Transportation Research Part D, 52 (A), 303-321. Yan, X., Wang, K., Yuan, Y., Jiang, X. ve Negenborn, R.R. (2018). Energy-efficient shipping: An application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors. Ocean Engineering, 169, 457-468.
  • İnternet Kaynakları
  • Indexmundi (2019). https://www.indexmundi.com/commodities/?commodity=iron-ore, Erişim Tarihi: 22.02.2019
  • Ship and Bunker (2019). https://shipandbunker.com/prices#IFO380 https://shipandbunker.com/prices#MGO, Erişim Tarihi: 22.02.2019