Yerdeğiştirme Tabanlı Deprem Erken Uyarı Sistemleri

Yerdeğiştirme tabanlı deprem gözlemleri giderek yaygınlaşmakta ve buna bağlı olarak kullanım alanları genişlemektedir. Deprem başladıktan kısa süre içerisinde meydana gelen depremin nihai büyüklüğünün belirlenmesi, hem Deprem Erken Uyarı Sistemleri (DEU) hem de depremden bittikten sonraki dönemde kayıpların kestirilmesi ve yardım faaliyetlerinin koordinasyonu için büyük önem taşımaktadır. 1999 Chi-Chi (Mw7.6), 1999 Hector Mine (Mw7.1) ve 2003 Tokachi-Oki (Mw8.3) gibi büyük depremler için yapılan testlerde kuvvetli yer hareketi ölçerlerden elde edilen yerdeğiştirmeye dayalı kestirimlerin daha duyarlı olmakla birlikte özellikle büyük depremleri olması gerekenden daha küçük olarak kestirdiği gözlenmektedir (Brown vd. 2011; Crowell vd. 2013). Büyük depremler sırasında kaynağa yakın hızölçerlerin satüre olması, kaynağa uzak olmaları durumunda ise erken uyarı için yeterli zaman kalmaması nedeniyle hızölçerlerin erken uyarı amaçlı kullanımında sorunlar bulunmaktadır. Jeodezik ölçüler ve ivme kayıtlarının birlikte kullanımı ile elde edilen sismojeodezik dalga formları ise satürasyon sorunu içermemeleri nedeniyle kaynağa çok yakın mesafeden veri sağlamakta, GNSS alıcılarının inersiyal olmayan bir sistemde ölçüm yapmaları sayesinde doğrudan kalıcı yerdeğiştirmeler ve buna bağlı deprem büyüklüğü hesaplanabilmesine olanak sağlamaktadırlar. Günümüzde A.B.D. ve Japonya gibi depreme maruz kalan gelişmiş ülkelerde sismojeodezik verilere dayalı erken uyarı sistemleri kurulmuş ve yaygınlaşmaya başlamıştır. Bu çalışmada, ülkemizde yakın dönemde meydana gelen bazı büyük depremler için sadece GNSS dalgaformlarına dayalı olarak deprem büyüklükleri hesaplanmıştır. Gökova, Gökçeada ve Van depremlerinin GNSS yerdeğiştirme dalga formları ile tekrar hesaplanması soncunda sırası ile 6.6, 6.9, 7.2 Mw olan deprem büyüklüğü 6.54, 7.21 ve 7.22 Mw olarak hesaplanmıştır. Bu sonuçlar, özellikle büyük depremler için GNSS dalgaformlarına dayalı olarak hesap edilen deprem büyüklüklerinin yüksek duyarlık sağladığını ve deprem erken uyarı amaçlı kullanımındaki potansiyelini göstermektedir.

Displacement Based Earthquake Early Warning Systems

Displacement based earthquake observations are becoming more common and application fields are becoming larger. The determination of the earthquake magnitude in a short time after the earthquake plays an important role both for Earthquake Early Warning Systems (EEW) and the estimation of the losses and coordinating the rescue efforts. However, magnitude estimation from the displacement waveforms for the 1999 Chi-Chi (Mw7.6), 1999 Hector Mine (Mw7.1) and 2003 Tokachi-Oki (Mw8.3) earthquake shows that while they are more precise, the earthquake magnitudes were underestimated (Brown et al. 2011; Crowell et al. 2013). There are well known bottlenecks with the velocity measuring seismometers due to the fact that they get saturated nearby large earthquakes or they do not provide sufficient time for early warning when they are away from the earthquake source. Geodetic measurements and accelerometer records provide data from the close vicinity of the earthquake source and enable to determine to static offsets and the earthquake magnitude based on displacements since GNSS receivers operate in a non-inertial reference frame. Nowadays, earthquake early warning systems based on seismogeodetic observations are being established and becoming more common in countries subject to earthquake hazard such as USA and Japan. In this study, earthquake magnitudes were estimated for several recent earthquakes in Turkey only by using the GNSS displacement waveforms. GNSS_based Re-estimation of the earthquake magnitudes for Gökova, Gökçeada and Van earthquakes resulted in the magnitudes of 6.54, 7.21 ve and 7.22 Mw, respectively, corresponding to the original magnitudes of 6.6, 6.9, 7.2. These results show that earthquake magnitudes based on GNSS waveforms provide high precision and their potential for use in earthquake early warning.

___

  • Aktuğ, B., Kaypak, B., & Çelik, R. N. (2010). Source parameters of 03 February 2002 Çay earthquake Mw 6.6 and aftershocks from GPS data, southwestern Turkey, Journal of Seismology, (14), 445-456.
  • Aktuğ B., Ozener H., Turgut B., Doğru A., Georgiev I., (2014), Preliminary results of 24 may 2014 Gökçeada earthquake, Ms6.5 as captured by continuous GNSS stations, WEGENER 2014: Measuring and Modelling our Dynamic Planet, 1-4 Eylül, University of Leeds, UK.
  • Ayhan M.E., Bürgmann R., McClusky S., Lenk O., Aktuğ B., Herece E., Reilinger R.E., (2001), Kinematics of the Mw 7.2, 12 November 1999, Düzce, Turkey earthquake, Geophysical Research Letter, 28(2), 367-370.
  • Bock Y., Crowell B., Melgar D., (2011a), Real time GNSS/seismic and eew results from el mayor cucapah and Tokoku-Oki earthquakes, Earthquake Early Warning Summit: Delivering Earthquake Warnings to the U.S. West Coast, Berkeley.
  • Bock Y., Melgar D., Crowell B.W., (2011b), Real-time strong motion broadband displacements from collocated GNSS and accelerometers, Bulletin of the Seismological Society of America, 101(6), 2904-2925.
  • Boore D.M., (2001), Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi Chi, Taiwan earthquake, Bulletin of the Seismological Society of America, 91(5), 1199-1211.
  • Boore D.M., Stephans C., Joyner B., (2002), Comments on baseline correction of digital strong-motion data: examples from the 1999 Hector Mine, California earthquake, Bulletin of the Seismological Society of America, 92(4), 1543-1560.
  • Boore D.M., Bommer J., (2005), Processing of strong motion accelograms: Needs, options and consequences, Soil Dynamics and Earthquake Engineering, (25), 93-115.
  • Böse M., Hauksson E., Solanki K., Kanamori H., Heaton T.H., (2009), Real‐time testing of the on‐site warning algorithm in southern California and its performance during the July 29 2008 Mw5. 4 Chino Hills earthquake, Geophysical Research Letters, 36(5), L00B03, doi:10.1029/2008GL036366.
  • Böse M., Heaton T.H., Hudnut K.W., (2013), Combining real-time seismic and GPS data for earthquake early warning, American Geophysical Union, Fall Meeting 2013, abstract id. G51B-05.
  • Brown H.M., Allen R.M., Hellweg M., Khainovski O., Neuhauser D., Souf A., (2011), Development of the elarmsmethodology for earthquake early warning: realtime application in california and offline testing in Japan, Soil Dynamics Earthquake Engineering, 31(2), 188-200.
  • Crowell B.W., Melgar D., Bock D., (2013), Earthquake magnitude scaling using seismogeodetic data, Geophysical Research Letter, 40(23), 6089-6094.
  • Crowell B.W., Schmidt D.A., Bodin P., Vidale J.E., Gomberg J., Renate Hartog J., Kress, V.C., Melbourne, T.I., Santillan, M., Minson, S.E., Jamison D.G., (2016), Demonstration of the cascadia G-FAST geodetic earthquake early warning system for the Nisqually, Washington, earthquake, Seismological Research Letters, 87(4), 930-943.
  • Cua G., Heaton T., (2007), The Virtual Seismologist (VS) method: A Bayesian approach to earthquake early warning, Earthquake early warning systems, (Gasparini P., Manfredi G., Zschau J., Ed.), Springer, Berlin, Heidelberg, ss. 97-132.
  • Ge L., (1999), GPS seismometer and its signal extraction, Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1999), Nashville, TN, September 14 - 17, ss. 41-52.
  • Ge L., Han S., Rizos C., Ishikawa Y., Hoshiba M., Yoshida Y., Izawa M., Hashimoto N., Himori S., (2000), GPS seismometers with up to 20 Hz sampling rate, Earth Planets Space, 52(10), 881-884.
  • Geng J., Bock Y., Melgar D., Crowell B.W., Haase J., (2013), A new seismogeodetic approach to GNSS and accelerometer observations of the 2012 Brawley seismic swarm: ımplications for earthquake early warning, Geochemistry, Geophysics, Geosystems, 14(7), 2124-2142.
  • Genrich J.F., Bock Y., (2006), Instantaneous geodetic positioning with 10-50 hz GNSS measurements: Noise charecteristics and implications for monitoring networks, Journal of Geophysical Research, Vol. 111, B03403, doi:10.1029/2005JB003617.
  • Graizer V.M., (1979), Determination of the true ground displacement by using strong motion records, Izvestiya Phys. Solid Earth, Earth Physics, 15(12), 875-885.
  • Graizer V.M., (2006), Tilts in strong ground motion, Bulletin of the Seismological Society of America, 96(6), 2090-2102.
  • Grapenthin R., Johanson I.A., Allen R.M., (2014), Operational real‐time GNSS‐enhanced earthquake early warning, Journal of Geophysical Research: Solid Earth, 119(10), 7944-7965.
  • Hirahara K., Nakano T., Hoso Y., Matsuo S., Obana K., (1994), An experiment for GPS strain seismometer, Japanese Symposium on GPS, December 15-16, Tokyo, Japan, ss. 67-75.
  • Hoshiba M., Iwakiri K., (2011), Initial 30 seconds of the 2011 off the Pacific coast of Tohoku Eartthquake(Mw9.0)-amplitude and Tc for magnitude estimation for earthquake early warning, Earth, Planets and Space, 63, 553-557.
  • Iwan W.D., Mooser M.A., Peng C.Y., (1985), Some observations on strong motion earthquake measuremenets using a digital accelerograph, Bulletin of the Seismological Society of America, 75(5), 1225-1246.
  • Ji C., Larson K.M., Tan Y., Hudnut K.W., Choi K., (2004), Slip history of the 2003 San Simeon earthwuake constrained by combining 1-Hz GNSS strong motion and teleseismic data, Geophysical research letters, 31(17), L17608, doi:10.1029/2004GL020448.
  • JMA, (2007), Earthquake early warning system, Japan Meteorological Agency, https://www.jma.go.jp/jma/en/Activities/eew.html, [Erişim 01 Haziran 2020].
  • Kawamoto S., Hiyama Y., Ohta Y., Nishimura T., (2016), First result from the GEONET real-time analysis system (REGARD): the case of the 2016 Kumamoto earthquakes, Earth, Planets and Space, 68(1), 190, doi:10.1186/s40623-016-0564-4.
  • Kim A., Dreger D., (2008), Rapture process of the 2004 Parkfield earthquake from near fault seismic waveform and geodetic records, Journal of Geophysical Research: Solid Earth, Vol. 113, B07308, doi:10.1029/2007JB005115.
  • Langbein J., Bock Y., (2004), High‐rate real‐time GPS network at Parkfield: Utility for detecting fault slip and seismic displacements, Geophysical Research Letters, 31(15), L15S20, doi:10.1029/2003GL019408.
  • Melgar D., Bock Y., Sanchez D., Crowell B.W., (2013), On robust and reliable automated baseline corrections for strong motion seismology, Journal of Geophysics Research:Solid Earth, 1188(3), 1177-1187.
  • Minson S.E., Murray J.R., Langbein J.O., Gomberg J.S., (2014), Real‐time inversions for finite fault slip models and rupture geometry based on high‐rate GNSS data, Journal of Geophysical Research: Solid Earth, 119(4), 3201-3231.
  • Miyazaki S., Larson K., Choi K., Hikima K., Koketsu K., Bodin P., Bodin, P., Haase, J., Gordon, E., Fukuda, J., Kato, T., Yamagiwa A., (2004), Modelling the rapture process of the 2003 September 25 Tokachi-Oki earthquake using 1-Hz GNSS data, Geophys. Res. Lett., 31(21), L21603, doi:10.1029/2004GL021457.
  • Nakamura Y., (1988), On the urgent earthquake detection and alarm system (UrEDAS), 9th World Conference on Earthquake Engineering, August 2-9, Tokyo‐Kyoto, Japan, ss.673-678.
  • Nikolaidis R., Bock Y., Jonge P.J., Shearer P., Agnew D.C., Doomselaar M., (2001), Seismic wave observations with the global positioning system, Journal of Geophysical Research: Solid Earth, 106(B10), 21897-21916.
  • Olson E.L., Allen R.M., (2005), The deterministic nature of earthquake rupture, Nature, 438(7065), 212-215.
  • Park J., Song TR., Tromp J., Okal E., Stein S., Roult G., Clevede E., Laske G., Kanamori H., Davis P., Berger J., Braitenberg C., Camp M.V., Lei X., Sun H., Xu H., Rosat S., (2005), Earthquakes free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake, Science, 308(5725), 1139-1144.
  • Pillet R., Virieux J., (2007), The effects of seismic rotations on inertial sensors, Geophysical Journal International, 171(3), 1314-1323.
  • Reilinger R.E., Ergintav S., Bürgmann R., McClusky S., Lenk O., Barka A., Gurkan O., Hearn L., Feigl K.L., Cakmak R., Aktuğ B., Ozener H., Töksöz M.N., (2000), Coseismic and poseismic fault slip for the 17 August 1999 m=7.5, Izmıt, Turkey earthquake, Science, 289(5484), 1519-1524.
  • Rolandone F., Dreger D., Murray M., Bürgmann R., (2006), Coseismic slip distribution of the 2003 Mw 6.6 San Simeon earthquake, California, determined from GNSS measurements and seismic waveform data, Geophysical research letters, 33(16), L16315, doi:10.1029/2006GL027079.
  • Kuyuk H.S., Allen R.M., Brown H., Hellweg M., Henson I., Neuhauser D., (2014), Designing a network‐based earthquake early warning algorithm for California: ElarmS‐2, Bulletin of the Seismological Society of America, 104(1), 162-173.
  • Tiryakioğlu İ., Aktuğ B., Yiğit C.Ö., Yavaşoğlu H.H., Sözbilir H., Özkaymak Ç., Poyraz F., Taneli E., Bulut F., Dogru A., Özener H., (2018), Slip distribution and source parameters of the 20 July 2017 Bodrum-Kos earthquake (Mw6. 6) from GPS observations, Geodinamica Acta, 30(1), 1-14, doi: 10.1080/09853111.2017.1408264.
  • Tsuji H., Matsuo K., Furuya T., Yamao H., Kamakari Y., (2016), Development of a precise positioning technique using multi-GNSS, FIG Working Week 2016 – Recovery from Disaster, May 2–6, Christchurch, New Zealand.
  • Wu Y., Kanamori H., (2005), Experiment on onsite early warning method for the taiwan early warning system, Bulletin of the Seismological Society of America, 95(1), 347-353.
  • Wu Y.M., Zhao L., (2006), Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning, Geophysical Research Letters, 33(16), L16312, doi:10.1029/2006GL026871.
  • Yamasaki E., (2012), What we can learn from japan's early earthquake warning system, https://www.semanticscholar.org/paper/WhatWe-Can-Learn-From-Japan's-Early-EarthquakeYamasaki/e9b32bcda1a287a258432dcb7a338230851c7de5, [Erişim 01 Haziran 2020].
Doğal Afetler ve Çevre Dergisi-Cover
  • ISSN: 2528-9640
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Artvin Çoruh Üniversitesi Doğal Afetler Uygulama ve Araştırma Merkezi