Trapez Labirent Savakların Hesaplamalı Akışkanlar Dinamiği (HAD) Kullanılarak Analizi

Labirent tipi dolusavaklar, etkili kret uzunluklarının arttırılması sayesinde klasik dolusavaklara nazaran daha yüksek savaklama kapasitesine sahiptirler. Bu tür savakların hidrolik performanslarını araştırmak için son yıllarda birçok deneysel çalışma yürütülmüştür. Günümüzdeki gelişmiş sayısal yöntemlerin deneysel çalışmalarla birlikte kullanılmasıyla araştırmacılar bu tür sistemlerin davranışları hakkında daha fazla bilgiye sahip olabilmekte ve daha iyi tasarımlar elde edebilmektedirler. Bu çalışmada, Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemi kullanılarak, dört faklı savak yan duvar açısına sahip trapez labirent savakların farklı hidrolik koşullar altında analizleri yapılmıştır. Ayrıca, elde edilen sonuçlar deneysel verilerle karşılaştırılmıştır. Çalışmada incelenen modelin üç farklı savak yan duvar açısı ile 3-B sayısal modeli hazırlanmış uygun sınır şartları altında FLOW-3D yazılımı kullanılarak sayısal analizleri yapılmıştır. HAD analizlerinde türbülanslı akım modeli ve VOF (Volume of Fluid) metodu kullanılmıştır.HAD tekniği yardımıyla labirent savakların farklı akım koşullarındaki su yüzü ve hız profilleri elde edilerek detaylı analizler yapılmış ve elde edilen sonuçlar doğrultusunda savağın hidrodinamik davranışı ortaya konmaya çalışılmıştır. Daha sonra sayısal simülasyonlardan elde edilen debi katsayıları deneysel bazı sonuçlarla karşılaştırılarak sayısal modelin doğrulaması yapılmış ve savaklama performansı belirlenmiştir. Sayısal simülasyon çıktıları incelenerek tasarımları hakkında detaylı sonuçlar elde edilmiştir. Elde edilen deneysel ve sayısal sonuçların birbiriyle uyumlu olduğu görülmüştür. Analiz sonuçlarından savak yan duvar açının düşmesiyle (dolayısıyla kret uzunluğunun artmasıyla) savaklama veriminin arttığı görülmüştür.

Analysis of Trapezoidal Labyrinth Weirs Using Computation Fluid Dynamics (CFD)

Labyrinth spillways have higher discharge capacity than conventional spillways due to effective crest length enhancement. Several experimental studies have been conducted in recent years to investigate the hydraulic performances of labyrinth weirs. By using advanced numerical methods together with experimental studies, researchers can gain more knowledge about the behavior of such systems and obtain better designs. In this study, trapezoidal labyrinth weirs with four different side wall angles were analyzed under different hydraulic conditions by using the Computational Fluid Dynamics (CFD) method. In addition, the results obtained were compared with experimental data. Numerical simulation outputs have been examined and detailed results have been obtained about their designs.

___

  • Aydın, M.C., (2012). CFD simulation of free-surface flow over triangular labyrinth side weir, Advances in Engineering Software, 45; 159-166.
  • Aydin, M.C., Emiroglu, M.E., (2013). Determination of capacity of labyrinth side weir by CFD. Flow Measurement and Instrumentation, 29: 1-8.
  • Aydin, M.C., Emiroğlu, M.E., (2016). Numerical analysis of subcritical flow over two-cycle trapezoidal labyrinth side weir, Flow Measurement and Instrumentation, 48(1): 20-28.
  • Bilhan, O., Emiroglu, M.E., Miller, C.J., (2016). Experimental Investigation of Discharge Capacity of Labyrinth Weirs with and without Nappe Breakers. World Journal of Mechanics, 6, 207-221.
  • Bilhan, O., Aydin, M.C., Emiroglu, M.E., Miller, C.J., (2018) Experimental and CFD Analysis of Circular Labyrinth Weirs. Journal of Irrigation and Drainage Engineering 144(6):04018007-1.DOI: 10.1061/(ASCE)IR.1943-4774.0001301
  • Bruce, M. Savage, B.M., Brian, M. Crookston, B.M., Paxson, G.S., (2016) Physical and Numerical Modeling of Large Headwater Ratios for a 15° Labyrinth Spillway. Journal of Hydraulic Engineering, 142(11): 1-7.
  • Crookston, B.M., Tullis, B.P., (2012a). Arced Labyrinth Weirs. Journal of Hydraulic Engineering, 138(6): 555-562.
  • Crookston, B.M., Tullis, B.P., (2012b). Labyrinth Weirs: Nappe Interference and Local Submergence. Journal of Irrigation and Drainage Engineering, 138(8): 757-765.
  • Crookston, B.M., Tullis, B.P., (2013). Hydraulic Design and Analysis of Labyrinth Weirs. I: Discharge Relationships. Journal of Irrigation and Drainage Engineering, 139(5): 363-370.
  • Crookston, B.M., Paxson, G.S., Savage, B.M., (2012). Hydraulic Performance of Labyrinth Weirs for High Headwater Ratios. 4th IAHR International Symposium on Hydraulic Structures, 9-11 February 2012, Porto, Portugal.
  • Dabling, M.R., Tullis, B.P., Crookston, B.M., (2013). Staged Labyrinth Weir Hydraulics. Journal of Irrigation and Drainage Engineering, 139(11): 955-960.
  • Flow 3D, (2014). Theory. Flow-3D User Manual, v11.0.3. Flow Science, Inc.
  • Hirt, C. W., and Nichols, B. D., (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225.
  • Khode, B.V., Tembhurkar, A.R., Porey, P.D., Ingle, R.N., (2012). Experimental Studies on Flow over Labyrinth Weir. Journal of Irrigation and Drainage Engineering, 138(6): 548-552.
  • Paxon, G., Savage, B., (2006). Labyrinth Spillways: Comparison of Two Popular U.S.A. Design Methods and Consideration of Non-Standard Approach Conditions and Geometries. International Junior Researcher and Engineer Workshop on Hydraulic Structures, , J. Matos and H. Chanson (Eds), Report CH61/06, Division of Civil Engineering, The University of Queensland, Brisbane, Australia.
  • Tullis, J.P., Amanian, N., Waldron, D. (1995). Design of Labyrinth Spillways. Journal of Hydraulic Engineering, 121(3): 247-255.