Rifampisinin sucul ortamlardan giderimi için farklı teknolojilerin uygulanması: Yakın tarihli bir derleme

Antibiyotikler, insan ve veteriner ilaçları olarak ve su ürünleri yetiştiriciliği ve tarımda yaygın olarak kullanılan bir ilaç grubudur. Son zamanlarda, antibiyotiklerin insanlar ve hayvanlar tarafından tüketildikten sonra tamamen metabolize edilememesi ve klasik atıksu arıtma tesisleri tarafından tamamen uzaklaştırılamaması nedeniyle, ana bileşikler ve bunların metabolitleri sürekli olarak çevresel matrislere atılmakta ve salınmaktadır. Antibiyotiklerin çevresel matrislerde birikmesi ve kalıcılığı, ng/L-μg/L kadar düşük konsantrasyon seviyelerinde bile ekosistemler üzerinde zararlı etkilere yol açabilir. Makrosiklik antibiyotik sınıfına ait olan rifampisin (RIF), tüberküloz tedavisinde yaygın olarak kullanılan en önemli antibiyotiktir. Son zamanlarda, RIF sucul ortamlarda tespit edilmiştir ve etkili bir şekilde giderilmesi gereklidir. Bu derleme, antibiyotik RIF'in kaynakları, akıbeti, etkileri ve giderim prosesleri ile ilgili mevcut bilgi durumunu ele almaktadır. Bu derlemede, RIF giderimi için ileri oksidasyon prosesleri (AOP'ler), adsorpsiyon ve diğer teknolojiler (membran prosesi ve hareketli yataklı biyofilm reaktör) gibi farklı arıtma teknikleri değerlendirilmiş ve karşılaştırılmıştır. Bu teknikler arasında performans ve verimliliğe odaklanılarak bir karşılaştırma yapılmıştır. Sonuç olarak adsorpsiyon ve AOP'lerin en çok çalışılan yöntem olduğu ve çalışılan RIF giderim yöntemlerinin hemen hemen hepsinin de başarılı olduğu görülmüştür.

The Application of Different Technologies for Removal of Rifampicin From Aquatic Environments: A Recent Review

Antibiotics are a group of drugs widely used as human and veterinary drugs and in aquaculture and agriculture. Recently, parent compounds and their metabolites are constantly excreted and released into environmental matrices, due to the fact that antibiotics cannot be completely metabolized after consumption by humans and animals and cannot be completely removed by conventional wastewater treatment plants. The accumulation and persistence of antibiotics in environmental matrices can lead to harmful effects on ecosystems, even at concentration levels as low as ng/L to μg/L. Rifampicin (RIF), which belongs to the macrocyclic antibiotic class, is the most important antibiotic widely used in the tuberculosis treatment. Lately, the RIF was detected in aquatic environments and needs to be removal effectively. This review considers the current state of knowledge regarding the sources, fate, effects and removal processes of the antibiotic RIF. In this review, the different treatment techniques such as adsorption, advanced oxidation processes (AOPs) and other technologies (membrane process and moving bed biofilm reactor) for RIF removal were evaluated and compared. A comparison between these techniques was made focusing on performance and efficiency. As a result, it was found that adsorption and AOPs were the most studied method and almost all of the studied RIF removal methods were also to be successful.

___

  • S.N. Oba, J. O. Ighalo, C.O. Aniagor, and C.A. Igwegbe, Removal of ibuprofen from aqueous media by adsorption: A comprehensive review, Science of The Total Environment, 780, 146608, 2021. https://doi.org/10.1016/j.scitotenv.2021.146608.
  • T. Deblonde, C. Cossu-Leguille, and P. Hartemann, Emerging pollutants in wastewater: A review of the literature, International Journal of Hygiene and Environmental Health, 214(6), 442-448, 2011. https://doi.org/10.1016/j.ijheh.2011.08.002.
  • M. Patel, R. Kumar, K. Kishor, T. Mlsna, C. U. Pittman, and D. Mohan, Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods, Chemical Reviews, 119(6), 3510-3673, 2019. 10.1021/acs.chemrev.8b00299.
  • Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review, Water Research, 47(3), 957-995, 2013. https://doi.org/10.1016/j.watres.2012.11.027.
  • K. Kümmerer, Antibiotics in the aquatic environment – A review – Part I, Chemosphere, 75(4), 417-434, 2009. https://doi.org/10.1016/j.chemosphere.2008.11.086.
  • V. Homem and L. Santos, Degradation and removal methods of antibiotics from aqueous matrices – A review, Journal of Environmental Management, 92(10), 2304-2347, 2011. https://doi.org/10.1016/j.jenvman.2011.05.023.
  • E.A. Campbell, N. Korzheva, A. Mustaev, K. Murakami, S. Nair, A. Goldfarb, S.A. Darst, Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase, Cell, 104(6), 901-912, 2001. https://doi.org/10.1016/S0092-8674(01)00286-0.
  • R. Shokri and M. Amjadi, Boron and nitrogen co-doped carbon dots as a chemiluminescence probe for sensitive assay of rifampicin, Journal of Photochemistry and Photobiology A: Chemistry, 425, 113694, 2022. https://doi.org/10.1016/j.jphotochem.2021.113694.
  • H. Soni and J. Malik, Rifampicin as Potent Inhibitor of COVID -19 Main Protease: In-Silico Docking Approach, Saudi Journal of Medical and Pharmaceutical Sciences, 6, 588-593, 2020. 10.36348/sjmps.2020.v06i09.001.
  • M. Shafaati, M. Miralinaghi, R.H.S.M. Shirazi, and E. Moniri, The use of chitosan/Fe3O4 grafted graphene oxide for effective adsorption of rifampicin from water samples, Research on Chemical Intermediates, 46 (12), 5231-5254, 2020. 10.1007/s11164-020-04259-9.
  • S. Rastgar and S. Shahrokhian, Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: Layer-by-layer electrochemical preparation, characterization and rifampicin sensory application, Talanta, 119, 156-163, 2014. https://doi.org/10.1016/j.talanta.2013.10.047.
  • Tupin, M. Gualtieri, F. Roquet-Banères, Z. Morichaud, K. Brodolin, and J.-P. Leonetti, Resistance to rifampicin: at the crossroads between ecological, genomic and medical concerns, International Journal of Antimicrobial Agents, 35(6), 519-523, 2010. https://doi.org/10.1016/j.ijantimicag.2009.12.017.
  • N. Forrest Graeme and K. Tamura, Rifampin Combination Therapy for Nonmycobacterial Infections, Clinical Microbiology Reviews, 23(1), 14-34, 2010, 10.1128/CMR.00034-09.
  • B. Gao, S. Dong, J. Liu, L. Liu, Q. Feng, N. Tan, T. Liu, L. Bo, L. Wang, Identification of intermediates and transformation pathways derived from photocatalytic degradation of five antibiotics on ZnIn2S4, Chemical Engineering Journal, 304, 826-840, 2016. https://doi.org/10.1016/j.cej.2016.07.029.
  • J.L.d.S. Duarte, A.M.S. Solano, M.L.P.M. Arguelho, J. Tonholo, C.A. Martínez-Huitle, and C.L.d.P.e.S. Zanta, Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes, Journal of Water Process Engineering, 22, 250-257, 2018. https://doi.org/10.1016/j.jwpe.2018.02.012.
  • W. H. Organization, World Health Organization model list of essential medicines: 21st list 2019, World Health Organization, 2019.
  • E. Grotz, E. Bernabeu, M. Pappalardo, D.A. Chiappetta, and M.A. Moretton, Nanoscale Kolliphor® HS 15 micelles to minimize rifampicin self-aggregation in aqueous media, Journal of Drug Delivery Science and Technology, 41, 1-6, 2017. https://doi.org/10.1016/j.jddst.2017.06.009.
  • C. Becker, J.B. Dressman, H.E. Junginger, S. Kopp, K.K. Midha, V.P. Shah, S. Stavchansky, D.M. Barends, Biowaiver monographs for immediate release solid oral dosage forms: Rifampicin, Journal of Pharmaceutical Sciences, 98(7), 2252-2267, 2009. https://doi.org/10.1002/jps.21624.
  • K. Hao, S. Suryoprabowo, S. Song, H. Kuang, and L. Liu, Rapid detection of rifampicin in fish using immunochromatographic strips, Food and Agricultural Immunology, 31(1), 700-710, 2020. 10.1080/09540105.2020.1753017.
  • A.U. Khan, F. Shah, R.A. Khan, B. Ismail, A.M. Khan, and H. Muhammad, Preconcentration of rifampicin prior to its efficient spectroscopic determination in the wastewater samples based on a nonionic surfactant, Turkish Journal of Chemistry, 45(4), 1201-1209, 2021. 10.3906/kim-2102-28.
  • D.C. Henrique, D.U. Quintela, A.H. Ide, A. Erto, J.L.d.S. Duarte, and L. Meili, Calcined Mytella falcata shells as alternative adsorbent for efficient removal of rifampicin antibiotic from aqueous solutions, Journal of Environmental Chemical Engineering, 8(3), p. 103782, 2020. https://doi.org/10.1016/j.jece.2020.103782.
  • L. Liu, Q. Xu, G. Owens, and Z. Chen, Fenton-oxidation of rifampicin via a green synthesized rGO@nFe/Pd nanocomposite, Journal of Hazardous Materials, 402, 123544, 2021. https://doi.org/10.1016/j.jhazmat.2020.123544.
  • X. Hu, K. He, and Q. Zhou, Occurrence, accumulation, attenuation and priority of typical antibiotics in sediments based on long-term field and modeling studies, Journal of Hazardous Materials, 225-226, 91-98, 2012. https://doi.org/10.1016/j.jhazmat.2012.04.062.
  • J. Du, H. Zhao, and J. Chen, [Simultaneous determination of 23-antibiotics in mariculture water using solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry], (in chi), Se pu = Chinese journal of chromatography, 33(4), 348-53, 2015. 10.3724/sp.j.1123.2014.09028.
  • H. Thuy and T. Loan, Antibiotic residues from shrimp farming in coastal wetland, Natural Resources and Environment, 2 (2012), 61-63, 2012.
  • Rico, R. Jacobs, P. J. Van den Brink, and A. Tello, A probabilistic approach to assess antibiotic resistance development risks in environmental compartments and its application to an intensive aquaculture production scenario, Environmental Pollution, 231, 918-928, 2017. https://doi.org/10.1016/j.envpol.2017.08.079.
  • W. Cai, X. Weng, and Z. Chen, Highly efficient removal of antibiotic rifampicin from aqueous solution using green synthesis of recyclable nano-Fe3O4, Environmental Pollution, 247, 839-846, 2019. https://doi.org/10.1016/j.envpol.2019.01.108.
  • J.-J. Huang, H-Y. Hu, S-Q. Lu, Y. Li, F. Tang, Y. Lu, B. Wei, Monitoring and evaluation of antibiotic-resistant bacteria at a municipal wastewater treatment plant in China, Environment International, 42, 31-36, 2012. https://doi.org/10.1016/j.envint.2011.03.001.
  • J. Cao, Y. Mi, C. Shi, Y. Bian, C. Huang, Z. Ye, L. Liu, L. Miao, First-line anti-tuberculosis drugs induce hepatotoxicity: A novel mechanism based on a urinary metabolomics platform, Biochemical and Biophysical Research Communications, 497 (2), 485-491, 2018. https://doi.org/10.1016/j.bbrc.2018.02.030.
  • M. Combrink, D.T. Loots, and I. du Preez, Metabolomics describes previously unknown toxicity mechanisms of isoniazid and rifampicin, Toxicology Letters, 322, 104-110, 2020. https://doi.org/10.1016/j.toxlet.2020.01.018.
  • Y. Liao, S.Q. Peng, X.Z. Yan, H.B. Chen, and L.S. Zhang, [Metabonomic profile of urine from rats administrated with different treatment period of rifampin], (in chi), Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae, 30(6), 696-702, 2008.
  • R.M. Jasmer, J.J. Saukkonen, H.M. Blumberg, C.L. Daley, J. Bernardo, E. Vittinghoff, M.D. King, L.M. Kawamura, P.C. Hopewell, Short-Course Rifampin and Pyrazinamide Compared with Isoniazid for Latent Tuberculosis Infection: A Multicenter Clinical Trial, Annals of Internal Medicine, 137(8), 640-647, 2002, 10.7326/0003-4819-137-8-200210150-00007.
  • B.S. Rathi and P.S. Kumar, Application of adsorption process for effective removal of emerging contaminants from water and wastewater, Environmental Pollution, 280, 116995, 2021. https://doi.org/10.1016/j.envpol.2021.116995.
  • C.P. Silva, G. Jaria, M. Otero, V.I. Esteves, and V. Calisto, Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: Has a step forward already been taken?, Bioresource Technology, 250, 888-901, 2018. https://doi.org/10.1016/j.biortech.2017.11.102.
  • J. Ouyang, L. Zhou, Z. Liu, J.Y.Y. Heng, and W. Chen, Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review, Separation and Purification Technology, 253, 117536, 2020. https://doi.org/10.1016/j.seppur.2020.117536.
  • M.J. Ahmed, Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review, Journal of Environmental Management, 190, 274-282, 2017. https://doi.org/10.1016/j.jenvman.2016.12.073.
  • M. Erdem, R. Orhan, M. Şahin, and E. Aydın, Preparation and Characterization of a Novel Activated Carbon from Vine Shoots by ZnCl2 Activation and Investigation of Its Rifampicine Removal Capability, Water, Air, & Soil Pollution, 227(7), 226, 2016. 10.1007/s11270-016-2929-5.
  • H. Kais, N. Yeddou Mezenner, and M. Trari, Biosorption of rifampicin from wastewater using cocoa shells product, Separation Science and Technology, 55(11), 1984-1993, 2020. 10.1080/01496395.2019.1623255.
  • L. Rusu, C-G. Grigoraș, E.M. Suceveanu, A-I. Simion, A.V. Dediu Botezatu, B. Istrate, I. Doroftei, Eco-Friendly Biosorbents Based on Microbial Biomass and Natural Polymers: Synthesis, Characterization and Application for the Removal of Drugs and Dyes from Aqueous Solutions, Materials, 14(17), 2021. 10.3390/ma14174810.
  • W.-x. Zhang, Nanoscale Iron Particles for Environmental Remediation: An Overview, Journal of Nanoparticle Research, 5(3), 323-332, 2003, 10.1023/A:1025520116015.
  • Z. Lin, X. Weng, G. Owens, and Z. Chen, Simultaneous removal of Pb(II) and rifampicin from wastewater by iron nanoparticles synthesized by a tea extract, Journal of Cleaner Production, 242, 118476, 2020. https://doi.org/10.1016/j.jclepro.2019.118476.
  • Q. Xu, W. Li, X. Weng, G. Owens, and Z. Chen, Mechanism and impact of synthesis conditions on the one-step green synthesis of hybrid RGO@Fe/Pd nanoparticles, Science of The Total Environment, 710, 136308, 2020. https://doi.org/10.1016/j.scitotenv.2019.136308.
  • Q. Xu, G. Owens, and Z. Chen, Adsorption and catalytic reduction of rifampicin in wastewaters using hybrid rGO@Fe/Pd nanoparticles, Journal of Cleaner Production, 264, 121617, 2020. https://doi.org/10.1016/j.jclepro.2020.121617.
  • C. Xue, W. Cai, X. Weng, G. Owens, and Z. Chen, A one step synthesis of hybrid Fe/Ni-rGO using green tea extract for the removal of mixed contaminants, Chemosphere, 284, 131369, 2021. https://doi.org/10.1016/j.chemosphere.2021.131369.
  • A.R. Abbasi and M. Rizvandi, Influence of the ultrasound-assisted synthesis of Cu–BTC metal–organic frameworks nanoparticles on uptake and release properties of rifampicin, Ultrasonics Sonochemistry, 40, 465-471, 2018. https://doi.org/10.1016/j.ultsonch.2017.07.041.
  • A.F.d. Silva, J.L.d.S. Duarte, and L. Meili, Different routes for MgFe/LDH synthesis and application to remove pollutants of emerging concern, Separation and Purification Technology, 264, 118353, 2021. https://doi.org/10.1016/j.seppur.2021.118353.
  • Hussain, W.A. Mahdi, S. Alshehri, S.I. Bukhari, and M.A. Almaniea, Application of Green Nanoemulsion for Elimination of Rifampicin from a Bulk Aqueous Solution, International Journal of Environmental Research and Public Health, 18(11), 2021. 10.3390/ijerph18115835.
  • Y. Deng and R. Zhao, Advanced Oxidation Processes (AOPs) in Wastewater Treatment, Current Pollution Reports, 1(3), 167-176, 2015. 10.1007/s40726-015-0015-z.
  • J.L. Wang and L.J. Xu, Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application, Critical Reviews in Environmental Science and Technology, 42(3), 251-325, 2012. 10.1080/10643389.2010.507698.
  • K. Ikehata, N. Jodeiri Naghashkar, and M. Gamal El-Din, Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review, Ozone: Science & Engineering, 28(6), 353-414, 2006. 10.1080/01919510600985937.
  • C. Amor, L. Marchão, M.S. Lucas, and J.A. Peres, Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review, Water, 11(2), 2019. 10.3390/w11020205.
  • M. Trojanowicz, A. Bojanowska-Czajka, I. Bartosiewicz, and K. Kulisa, Advanced Oxidation/Reduction Processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) – A review of recent advances, Chemical Engineering Journal, 336, 170-199, 2018. https://doi.org/10.1016/j.cej.2017.10.153.
  • Y. Gao, P. Champagne, D. Blair, O. He, and T. Song, Activated persulfate by iron-based materials used for refractory organics degradation: a review, Water Science and Technology, 81(5), 853-875, 2020. 10.2166/wst.2020.190.
  • S. Guerra-Rodríguez, E. Rodríguez, D.N. Singh, and J. Rodríguez-Chueca, Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review, Water, 10(12), 2018. 10.3390/w10121828.
  • J.O. Ighalo, C.A. Igwegbe, C.O. Aniagor, and S.N. Oba, A review of methods for the removal of penicillins from water, Journal of Water Process Engineering, 39, 101886, 2021. https://doi.org/10.1016/j.jwpe.2020.101886.
  • K. Tahvildari and T. Bigdeli, Treatment of pharmaceutical wastewater containing antibiotic with oxidation processes by metallic catalysts, Biointerface Research in Applied Chemistry, 9(2), 3853 - 3859, 2019. 10.33263/BRIAC92.853859.
  • E.S. MadiVoli, P. G. Kareru, D.S. Makhanu, K. S. Wandera, E.G. Maina, S.I. Wanakai, P.K. Kimani, Synthesis of spherical titanium dioxide microspheres and its application to degrade rifampicin, Environmental Nanotechnology, Monitoring & Management, 14, 100327, 2020. https://doi.org/10.1016/j.enmm.2020.100327.
  • P. Liu, Z. Wu, A.V. Abramova, and G. Cravotto, Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review, Ultrasonics Sonochemistry, 74, 105566, 2021, https://doi.org/10.1016/j.ultsonch.2021.105566.
  • Ā. Afroozān Bāzghale and A. Mohammad-Khāh, Improvement of Ultrasound-Assisted Removal of Rifampin in the Presence of N: ZnO/GO Nanocomposite as Sonocatalyst, Chemistryselect, 5(15), 4413-4421, 2020. https://doi.org/10.1002/slct.202000068.
  • Khataee, P. Gholami, B. Kayan, D. Kalderis, L. Dinpazhoh, and S. Akay, Synthesis of ZrO2 nanoparticles on pumice and tuff for sonocatalytic degradation of rifampin, Ultrasonics Sonochemistry, 48, 349-361, 2018. https://doi.org/10.1016/j.ultsonch.2018.05.008. D. Kanakaraju, B.D. Glass, and M. Oelgemöller, Titanium dioxide photocatalysis for pharmaceutical wastewater treatment, Environmental Chemistry Letters, 12(1), 27-47, 2014. 10.1007/s10311-013-0428-0.
  • S.O. Akpotu, E.O. Oseghe, O.S. Ayanda, A.A. Skelton, T.A.M. Msagati, and A.E. Ofomaja, Photocatalysis and biodegradation of pharmaceuticals in wastewater: effect of abiotic and biotic factors, Clean Technologies and Environmental Policy, 21(9), 1701-1721, 2019. 10.1007/s10098-019-01747-4.
  • H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, X. Li, A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies, Chinese Journal of Catalysis, 43(2), 178-214, 2022. https://doi.org/10.1016/S1872-2067(21)63910-4.
  • H. Kais, N.Y. Mezenner, M. Trari, and F. Madjene, Photocatalytic Degradation of Rifampicin: Influencing Parameters and Mechanism, Russian Journal of Physical Chemistry A, 93(13), 2834-2841, 2019. 10.1134/S0036024419130119.
  • F. Soleimani and A. Nezamzadeh-Ejhieh, Study of the photocatalytic activity of CdS–ZnS nano-composite in the photodegradation of rifampin in aqueous solution, Journal of Materials Research and Technology, 9(6), 16237-16251, 2020. https://doi.org/10.1016/j.jmrt.2020.11.091.
  • R. Zou, T. Xu, X. Lei, Q. Wu, and S. Xue, Novel and efficient red phosphorus/hollow hydroxyapatite microsphere photocatalyst for fast removal of antibiotic pollutants, Journal of Physics and Chemistry of Solids, 139, 109353, 2020. https://doi.org/10.1016/j.jpcs.2020.109353.
  • N. Thuy Dang Thi, T. Ha Nguyen, V. Anh Ngo, T. Sen Nguyen, D. Dung Nguyen, and H. Nam Nguyen, Environmental Science and Pollution Research, 2022. 10.21203/rs.3.rs-581621/v1.
  • G. Chen, Electrochemical technologies in wastewater treatment, Separation and Purification Technology, 38(1), 11-41, 2004. https://doi.org/10.1016/j.seppur.2003.10.006.
  • J. Wang and R. Zhuan, Degradation of antibiotics by advanced oxidation processes: An overview, Science of The Total Environment, 701 (135023), 2020. https://doi.org/10.1016/j.scitotenv.2019.135023.
  • Sirés and E. Brillas, Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review, Environment International, 40, 212-229, 2012. https://doi.org/10.1016/j.envint.2011.07.012.
  • L.R.D. Brito, S.O. Ganiyu, E.V. dos Santos, M.A. Oturan, and C.A. Martínez-Huitle, Removal of antibiotic rifampicin from aqueous media by advanced electrochemical oxidation: Role of electrode materials, electrolytes and real water matrices, Electrochimica Acta, 396, 139254, 2021. https://doi.org/10.1016/j.electacta.2021.139254.
  • M. Klavarioti, D. Mantzavinos, and D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environment International, 35(2), 402-417, 2009. https://doi.org/10.1016/j.envint.2008.07.009.
  • D.P. Mohapatra, S.K. Brar, R.D. Tyagi, P. Picard, and R.Y. Surampalli, Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine, Science of The Total Environment, 470-471, 58-75, 2014. https://doi.org/10.1016/j.scitotenv.2013.09.034.
  • M.E.T. Sillanpää, T. Agustiono Kurniawan, and W.-h. Lo, Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP), Chemosphere, 83 (11), 1443-1460, 2011. https://doi.org/10.1016/j.chemosphere.2011.01.007.
  • D. Kanakaraju, B.D. Glass, and M. Oelgemöller, Advanced oxidation process-mediated removal of pharmaceuticals from water: A review, Journal of Environmental Management, 219, 189-207, 2018. https://doi.org/10.1016/j.jenvman.2018.04.103.
  • S. Stets, B. do Amaral, J.T. Schneider, I.R. de Barros, M.V. de Liz, R.R. Ribeiro, N. Nagata, P. Peralta-Zamora, Antituberculosis drugs degradation by UV-based advanced oxidation processes, Journal of Photochemistry and Photobiology A: Chemistry, 353, 26-33, 2018. https://doi.org/10.1016/j.jphotochem.2017.11.006.
  • Mukimin, H. Vistanty, and N. Zen, Hybrid advanced oxidation process (HAOP) as highly efficient and powerful treatment for complete demineralization of antibiotics, Separation and Purification Technology, 241, 116728, 2020, https://doi.org/10.1016/j.seppur.2020.116728.
  • Y. Orooji, A. Movahedi, Z. Liu, M. Asadnia, E. Ghasali, Y. Ganjkhanlou, A. Razmjou, H. Karimi-Maleh, N.T.H. Kiadeh, Luminescent film: Biofouling investigation of tetraphenylethylene blended polyethersulfone ultrafiltration membrane, Chemosphere, 267, 128871, 2021. https://doi.org/10.1016/j.chemosphere.2020.128871.
  • S. Arefi-Oskoui et al., Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein, Separation and Purification Technology, 280, 119822, 2022. https://doi.org/10.1016/j.seppur.2021.119822.
  • M.E. Casas, R.K. Chhetri, G. Ooi, K.M.S. Hansen, K. Litty, M. Christensson, C. Kragelund, H.R. Andersen, K. Bester, Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR), Water Research, 83, 293-302, 2015. https://doi.org/10.1016/j.watres.2015.06.042.
  • S. Li, S. Zhang, C. Ye, W. Lin, M. Zhang, L. Chen, J. Li, X. Yu, Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes, Marine Pollution Bulletin, 118(1), 289-296, 2017.https://doi.org/10.1016/j.marpolbul.2017.03.003.
Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi-Cover
  • ISSN: 1309-8640
  • Başlangıç: 2009
  • Yayıncı: DÜ Mühendislik Fakültesi / Dicle Üniversitesi