Kurşunun grafen oksit nanopartikülü ile giderimi ve grafen oksitin geri kazanımı

laboratuvar koşullarında Grafen Oksit (GO) adsorbanı geliştirilmiştir. XRD sonuçlarına göre grafen oksitinyüzeyinde 2Ѳ=16,880 ve 2Ѳ=44,600 ya karşılık gelen şiddet değerleri sırasıyla 004 şiddet birimi ve 106 şiddetbirimi olup kristal özelliğindedir. SERS analizlerine göre grafen oksite bağlanmış kurşunun D ve G bantlarındakimaximum pikleri sırasıyla 1450 ve 1670 cm-1 dır. Grafen oksitin BET yüzey alanı 21,3 m2/g, delik hacmi 3,98 nmolup kurşunun grafen oksit yüzeyine ve iç tabakalarına girişim yaptığı ve yüzeyine tutunduğu gözlenmiştir.Adsorpsiyonun ise C=C/C-C, C-O, C-OH ve C=O organik halkalarıyla bağlanma sonucu oluştuğu görülmüştür.TEM analizi sonuçları grafen oksitin yüzey katmanlarının adsorpsiyon öncesi katmanlaşmış olduğunu,adsorpsiyon prosesi sonrası ise grafen oksitin küresel partiküller halinde olduğunu göstermiştir. Maximum kurşunadsorpsiyon verimi (% 99,99) için optimum işletme koşulları (grafen oksit konsantrasyonu 1,8 mg/L,sıcaklık=18oC, temas süresi 28 dk, pH=8,5) saptanmıştır. Düşük pH ta H+iyonları çok fazla olduğundan düşükadsorpsiyon kapasiteleri oluşmaktadır. Kurşunun grafen oksite adsorpsiyonu düşük sıcaklıkta olmakta, yükseksıcaklıkta adsorpsiyon bloke edilmektedir. Grafen oksitin Kurşun adsorplama kapasitesi 320 mg/g dır.Adsorpsiyon kinetiği, yalancı birinci mertebe kinetik modele, adsorpsiyon izotermi ise, Freundlich modelineuymaktadır. Grafen oksit çok etkin bir adsorban olup, 8 kez ardışık kullanımda elde edilen maximum kurşungiderim verimi % 99’dur

Removal of Lead with graphene oxide nanoparticle and recovery of graphene oxide

In this study, Graphene Oxide (GO) adsorbent has been developed under laboratory conditions to eliminate Lead (Pb) adsorption process in wastewater from Mining Industry. According to XRD results, the intensity values corresponding to 2Ѳ=16,880 and 2Ѳ=44,600 on the surface of graphene oxide are 004 intensity units and 106 intensity units, respectively, and are crystalline. According to SERS analysis, the maximum peaks of lead connected to graphene oxide in D and G bands are 1450 and 1670 cm-1 , respectively. The BET surface area of graphene oxide is 21.3 m2 / g, the hole volume is 3.98 nm and it is observed that lead interferes with the surface and inner layers of graphene oxide. Adsorption was formed by binding with organic rings of C=C/C-C, C-O, COH and C=O. The results of TEM analysis showed that graphene oxide's surface layers were stratified before adsorption and graphene oxide was spherical particles after adsorption process. Optimum operating conditions (Graphene oxide concentration 1.8 mg/L, temperature =18oC, contact time 28 min, pH=8.5) were determined for maximum lead adsorption efficiency (99.99%). Low H+ ions are too low at low pH, resulting in low adsorption capacity. Adsorption of lead to graphene oxide is at low temperature and adsorption at high temperature is blocked. The maximum adsorption capacity of lead is 320 mg/g, adsorption kinetics and isotherm are pseudo first order kinetic model and Freundlich isotherm, respectively. Graphene oxide is a very effective adsorbent, the maximum lead yield obtained in 8 consecutive use is 99%.

___

  • [1] Peng, W., Li, H., Liu, Y., Song, S., (2017). A review on heavy metal ions adsorption from water by graphene oxide and its composites, J. Mol. Liq., 230, 496-504.
  • [2] Lim, J.Y., Mubarak, N.M., Abdullah, E.C., Nizamuddin, S., Khalid, M., (2018). Recent trends in the synthesis of graphene and graphene anomaterials for removal of heavy metals, J. Ind. Eng. Chem., 66, 29-44.
  • [3] Zou, Y.D., Wang, X.X., Khan, A., Wang, P.Y., Liu, Y.H., Alsaedi, A., Hayat, T., Wang, X.K., (2016). Environmental remediation and application of nanoscale zerovalent iron and its composites for the removal of heavy metal ions, Environ. Sci. Technol., 50, 7290–7304.
  • [4] Li, J., Wang, X.X., Zhao, G.X., Chen, C.L., Chai, Z.F., Alsaedi, A., Hayatf, T., Wang, X.K., (2018). Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev., 47, 2322–2356.
  • [5] Zhao, G.X., Huang, X.B., Tang, Z.W., Huang, Q.F., Niu, F.L., Wang, X.K., (2018). Polymer-based nanocomposites for heavy metal ions removal from aqueous solution, Polym. Chem., 9, 3562–3582.
  • [6] Saleh, T.A. & Gupta, V.K., 2012. ‘‘Column with CNT/magnesium oxide composite for lead (II) removal from water’’, Environ. Sci. Pollut. Res., 19 (4), 1224-1228.
  • [7] Bhatti, A.A., Memon, S., Memon, N., (2014). Dichromate extraction by calix [4] arene appended amberlite XAD-4 resin, Separ. Sci. Technol., 49 (5), 664-672.
  • [8] Jun, B.M., Kim, S., Kim, Y., Her, N., Heo, J., Han, J., Jang, M., Park, C.M., Yoon, Y., (2019). Comprehensive evaluation on removal of lead by graphene oxide and metal organic Framework, Chemosphere, 231, 82-92.
  • [9] Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff R.S., (2010). The chemistry of graphene oxide, Chem. Soc. Rev., 39 (1), 228-240.
  • [10] Ramesha, G.K., Kumara, A. V., Muralidhara, H.B., Sampath, S., (2011). Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes, J.Colloid Interface Sci., 361 (1), 270-277.
  • [11] Mishra, A.K. & Ramaprabhu, S., (2011). Functionalized graphene sheets for arsenic removal and desalination of sea water, Desalination, 282, 39-45.
  • [12] Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., Wang, X., Lin, N., Qi, Y., (2013). Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution, Appl. Surf. Sci., 279, 432-440.
  • [13] Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., Huang, Y., Wang, X., (2011). Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets, Dalton Trans., 40 (41), 10945- 10952.
  • [14] Li, Y.G. & Wu, Y.Y., (2009). Coassembly of graphene oxide and nanowires for large-area nanowire alignment, J. Am. Chem. Soc., 131, 5851– 5857.
  • [15] Ashtiani, M. H., (2011). Characterization of Nano‐ Porous Bentonite (Montmorillonite) Particles using FTIR and BET‐BJH Analyses, Part. Syst. Charact., 28, 71–76.
  • [16] Aksu, Z. & Gonen, F., (2004). Adsorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem., 39, 599–613.
  • [17] Hasar, H., (2003). Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk, J. Hazard. Mater., 97 (1–3), 49– 57.
  • [18] Malkoc, E. & Nuhoglu, Y., (2003). The removal of chromium (VI) from synthetic wastewater by Ulothrix zonata, Fresenius Environ. Bull., 12 (4), 376–381.
  • [19] Pardo, R., Herguedas, M., Barrado, E., (2003). Adsorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida, Anal. Bioanal. Chem., 376, 26–32.
  • [20] Zhang, J., Xie, X., Liang, C., Zhu, W., Men, X., (2019). Characteristics and mechanism of Pb (II) adsorption/desorption on GO/ r-GO under sulfidereducing conditions, Journal of Industrial and Engineering Chemistry, 73, 233–240.
  • [21] Wu, F.C., Tseng, R.L., Juang R.S., (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dyechitosansystems, Chemical Engineering Journal, 150, 366–373.
  • [22] Weber, W.J., & Morris, J.C., (1963). Kinetics of adsorption on carbon solution, J. Sanit. Eng. Div. Am. Soc. Civil Eng., 89, 31–59.
  • [23] Kumar, D.J., & Gaur, J.P., (2011). Chemical reaction and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat, Bioresource Technology, 102, 633–640.
  • [24] Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., Gagor, A., Feist, B., Wrzalik, R., (2013). Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton Trans., 42 (16), 5682-5689.
  • [25] Alqadami, A.A., Khan, M.A., Siddiqui, M.R., Alothman, Z.A., (2018). Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead (II) from water, Microporous Mesoporous Mater., 261, 198-206.
  • [26] Zhang, Y., Cao, B., Zhao, L.L., Sun, L.L., Gao, Y., Li, J.J., Yang, F., (2018). Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions, Appl. Surf. Sci., 427, 147–155.
  • [27] Xu, D., Tan, X.L., Chen, C.L., Wang, X.K., (2008). Adsorption of Pb (II) from aqueous solution to MX80 bentonite: Effect of pH, ionic strength, foreign ions and temperature, Applied Clay Science, 41, 1– 2, 37-46.
  • [28] Kumar, M., Chung, J.S., Hur S.H., (2019). Graphene Composites for Lead Ions Removal from Aqueous Solutions, Appl. Sci., 9(14), 2925.