Dairesel kesitli türbülans üreticilerinin ısıl performansının araştırılması

Bu çalışmada, iç içe iki borudan oluşan eş eksenli bir ısı değiştiricisinin iç borusuna yerleştirilmek üzere hazırlanan dairesel kesitli türbülatörlerin ısı transferi ve basınç kaybı üzerine olan etkileri araştırılmıştır. Bu analizlere ek olarak, ısı değiştiricisinin performans analizi de yapılmış ve hem ısı transferi hem de basınç kaybı açısından bir değerlendirme gerçekleştirilmiştir. Çalışmada; türbülatörler arası mesafe, Reynolds sayısı, türbülatör üzerinde bulunan delik sayısı ve delik çapı deneysel parametreler olarak seçilmiştir. Buhar kazanından elde edilen buhar, konsantrik ısı değiştiricisinin iç borusu ile dış borusu arasında meydana gelen halka boşluğa gönderilmiş ve böylece iç borunun dış yüzeyinde sabit sıcaklık şartları sağlanmıştır. Reynolds sayısı 10000 ile 42000 arasında seçilmiş ve çalışma akışkanı olarak hava kullanılmıştır. Çalışma sonunda ısı transferi ve sürtünme kayıp katsayısı hesaplamış ve hesaplanan değerler grafiklerle desteklenerek değerlendirilmiştir. Deneylerden elde edilen sonuçlar boş boru deney sonuçları ve literatürdeki bağıntılarla kıyaslanmış ve bu sonuçlarla uyumlu olduğu görülmüştür. Reynolds sayısındaki artış ile beraber ısı transferi değerleri % 460, sürtünme kayıp katsayısı değerleri de % 478 civarında artmıştır. Isıl performans ise; Reynolds sayısındaki artış ile ters orantılı olarak değişim göstermiş ve gerçekleştirilen bütün deneyler için enerji tasarrufu açısından bu türbülatör tasarımının uygulanabilir olduğu sonucuna varılmıştır.  

___

  • Acır, A., Ata, İ., (2016). A study of heat transfer enhancement in a new solar air heater having circular type turbulators, Journal of Energy Institute, 89, 606-616.
  • Acır, A., Ata, İ., (2016). Canlı, M.E., Investigation of effect of the circular ring turbulators on heat transfer augmentation and fluid flow characteristics of solar air heater, Experimental Thermal and Fluid Science, 77, 45-54.
  • Amro, M., Weigand, B., Poser, R., Schnieder, M., (2007). An experimental investigation of the heat transfer in a ribbed triangular cooling channel, International Journal of Thermal Sciences, 46, 491-500.
  • Eiamsa-ard, S., Promvonge, P., (2010). Thermal characteristics in round tube fitted with serrated twisted tape, Applied Thermal Engineering, 30, 1673-1682.
  • Eiamsa-ard, S., Konkaitpaiboon, V., Nanan, K., (2013). Thermohydraulics of turbulent flow through heat exchanger tubes fitted with circular-rings and twisted tapes, Chinese Journal of Chemical Engineering, 21, 585-593.
  • Etghani, M.M., Baboli, S.A.H., (2017). Numerical investigation and optimization of heat transfer and exergy loss in Shell and helical tube heat exchanger, Applied Thermal Engineering, 121, 294-301.
  • Güneş, S., Özceyhan, V., Büyükalaca, O., (2010). Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts, Experimental Thermal and Fluid Science, 34, 684-691.
  • Kongkaipaiboon, V., Nanan, K., Eimsa-ard, S., (2010). Experimental investigation of heat transfer and turbulent flow friction in a tube fitted with perforated conical-rings, International Communications in Heat and Mass Transfer 37, 560-567.
  • Mashoofi, N., Pesteei, S.M., Moosavi, A., Dizaji, H.S., (2017). Fabrication method and thermal-frictional behavior of a tube-in-tube helically coiled heat exchanger which contains turbulator, Applied Thermal Engineering, 111, 1008-1015.
  • Özceyhan, V:, Güneş, S., Büyükalaca, O., Altuntop, N., (2008).Heat trannsfer enhancement in a tube using ccircular cross sectional rings separated from Wall, Applied Energy, 85, 988-1001.
  • Promvonge, P., Koolnapadol, N., Pimsan, M., Thianpong, C., (2014). Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings, Applied Thermal Engineering, 62, 285-292.
  • Qi, Z., Chen, J., Chen, Z., (20079.Parametric study on the performance of a heat exchanger with corrugated louvered fins, Applied Thermal Engineering, 27,539-544.
  • Royds, R., (1921). Heat transmission by Radiation. Conduction and Convection, First Edition Company, London, 191-201.
  • Saha, S.K., Dutta, A., Dhal, S.K., (2001). Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regulary spaced twisted-tape elements, International Journal of Heat and Mass Trasnfer, 44, 4211-4223.
  • Saraç, B.A., Bali, T., An experimental study on heat transfer and pressure drop characteristics of decaying swirl flow through a circular pipe with a vortex generator, Experimental Thermal and Fluid Science, 32, 2007, pp. 158-165.
  • Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D., (2015).Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices, Renewable Sustainable Energy Reviews, 49, 444-469.
  • Şahin, B., Demir, A., (2008). Performance analysis of a heat exchanger having perforated square fins, Applied Thermal Engineering 28, 621-632.
  • Tandıroğlu,A., Ayhan, T., Energy dissipation analysis of transient heat transfer for turbulent flow in a circular tube with baffle inserts, Applied Thermal Engineering, 26, 2006, pp.178-185.
  • Yakut, K., Şahin, B., Çelik, C., Alemdaroğlu, N., Kurnuç, A., (2005). Effects of tapes with double-sided delta winglets on heat and vortex characteristics, Applied Energy 80, 77-95.