Artık malzemelerden Box Behnken test dizaynı kullanılarak hafif geopolimer beton üretimi

Bu çalışmada, artık malzemelerden hibrit geopolimer beton üretim olanakları araştırılmıştır. Bu amaçla, Sugözü Termik Santrali ve Afşin/Elbistan Termik Santrali’nden uçucu küller ile Soda Sanayii’nden Solvay Prosesi artıkları temin edilmiştir. Büyük çoğunluğu yüksek fırın cürufu ve uçucu küllerden oluşan CEM V/A kompoze çimento da geopolimer beton üretiminde kullanılmıştır. Kullanılan malzemelerin karakterizasyonu XRD ve XRF yöntemleri kullanılarak gerçekleştirilmiştir. Geopolimerizasyonu sağlamak üzere sodyum meta silikat (Na2SiO3) alkali aktivatör olarak kullanılmıştır. Na2SiO3 çözelti haline getirilerek 5M konsantrasyonunda harca katılmıştır. Harcın oluşturulması sırasında ekstra su kullanılmamıştır. Box Behnken İstatistiksel test dizaynı kullanılarak farklı oranlardaki artık malzeme ilavelerinin elde edilen geopolimer beton örneklerin tek eksenli basma dayanımı, sertlik, birim hacim ağırlık, su emme ve sonik hız özelliklerine etkileri incelenmiştir. Kuadratik modeller, test sonuçları doğrultusunda Box Behnken test dizaynında en uygun modeller olarak belirlenmiştir. R2 değeri 28 günlük tek eksenli basınç dayanımları için % 90,48, Shore sertlikleri için % 81,67, birim hacim ağırlıkları için % 94,85, su emme değerleri için % 92,09 ve sonik hız değerleri için ise % 87,74 olarak belirlenmiştir. Hibrit geopolimer beton üretimi sırasında 1570-1725 kg/m3 arasında değişen birim hacim ağırlıklarına sahip beton numunelerden 7-24 MPa arasında değişen tek eksenli basınç dayanımları elde edilmiştir. Elde edilen tüm geopolimer beton örnekler hafif beton sınıfında yer almıştır.

___

  • Abdel-Ghani N. T., Elsayed, H. A. ve Abdelmoied, S., (2018). Geopolymer synthesis by the alkali-activation of blastfurnace steel slag and its fire-resistance, HBRC Journal, 14(2), 159-164.
  • Arulrajah, A., Kua, T. A., Suksiripattanapong, C., Horpibulsuk, S., Shen, J. S., (2017). Compressive strength and microstructural properties of spent coffee grounds-bagasse ash based geopolymers with slag supplements, Journal of Cleaner Production, 162, 1491-1501.
  • Ascensao, G., Seabra, M. P., Aguiar, J. B. ve Labrincha J. A., (2017). Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability, Journal of Cleaner Production, 148, 23-30.
  • Askarian, M., Tao, Z., Adam, G. ve Samali, B., (2018). Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete, Construction and Building Materials, 186, 330-337.
  • ASTM C109 / C109M-16a, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, 2016, www.astm.org.
  • ASTM C642-13, 2013. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, West Conshohocken, PA, www.astm.org.
  • Bai, T., Song, Z. G., Wu, Y. G., Hu, X. D. ve Bai H., (2018). Influence of steel slag on the mechanical properties and curing time of metakaolin geopolymer, Ceramics International, 44(13), 15706-15713.
  • Davidovits, J., (1991). Geopolymers Inorganic Polymeric New Materials, Journal of Thermal Analysis, 37, 1633-1656.
  • Görhan, G., Kahraman, E., Başpınar, M. S. ve Demir, İ., (2008). Uçucu Kül Bölüm I: Oluşumu, Sınıflandırılması ve Kullanım Alanları, Yapı Teknolojileri Elektronik Dergisi, 2, 85-94.
  • Gür, N., Aktaş, A. ve Öztekin, E., (2012). Utilization of soda ash plant solid wastes in manufacture of cement, Elixir Cement & Con. Com. 47, 8866-8873.
  • Hajimohammadi, A., Ngo, T. ve Kashani, A., (2018). Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders, Journal of Cleaner Production, 193, 593-603.
  • Hassan, H. S., Abdel-Gawwad, H. A., Vasquez Garcia, S. R. ve Israde-Alcantara I., (2018). Fabrication and characterization of thermally-insulating coconut ash-based geopolymer foam, Waste Management, 80, 235-240.
  • Karakoç, M. B., Türkmen, İ., Maraş, M. M., Kantarcı, F. ve Demirboğa, R., (2016). Sulfate resistance of ferrochrome slag based geopolymer concrete, Ceramics International, 42(1), 1254-1260.
  • Keyte, L. M., Lukey, G. C. Ve Van Deventer, J. S. J., (2004). The effect of coal ash composition on properties of waste based geopolymers, International Symposium Of Research Students On Material Science And Engineering, 1-13.
  • Maddalena, R., Roberts, J. J. ve Hamilton, A., (2018). Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements, Journal of Cleaner Production, 186, 933-942.
  • Matsunaga, T., Kim, J. K., Hardcastle, S., Rohatgi, P. K., (2001). Crystallinity and Selected Properties of Fly Ash Particles, Materials science & Engineering, 325(1-2), 333-343.
  • Mcnulty, E., (2009). Geopolymers: An Environmental Alternative to Carbon Dioxide Producing Ordinary Portland Cement, Department of Chemistry, The Catholic University of America, Senior Comprehensive Paper, 22 s.
  • Nikolic, V., Komljenovic, M., Dzunuzovic, N. ve Miladinovic, Z., (2018). The influence of Pb addition on the properties of fly ash-based geopolymers, Journal of Hazardous Materials, 350, 98-107.
  • Pan Z., Tao Z., Cao Y. F., Wuhrer R. ve Murphy T., (2018). Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature, Cement and Concrete Composites, 86, 9-18.
  • Patel, Y. J. ve Shah, N., (2018). Enhancement of the properties of Ground Granulated Blast Furnace Slag based Self Compacting Geopolymer Concrete by incorporating Rice Husk Ash, Construction and Building Materials, 171, 654-662.
  • Rolfe, A., Huang, Y., Haaf, M., Pita, A., Rezvani, S., Dave, A. ve Hewitt, N. J., (2018). Technical and environmental study of calcium carbonate looping versus oxy-fuel options for low CO2 emission cement plants, International Journal of Greenhouse Gas Control, 75, 85-97.
  • Sephaku çimento, (2018). Termik santral artık üretim akım şeması. https://www.sephakucement.co.za/Product-Ash.php, (Erişim tarihi: 15.10.2018).Shen, W., Cao, L., Li, Q., Zhang, W., Wang, G. ve Li, C., (2015). Quantifying CO2 emissions from China’s cement industry, Renewable and Sustainable Energy Reviews, 50, 1004-1012.
  • Sisol, M., Drabova, M. and Mosej, J., (2014). Alkali activation of fresh and deposited black coal fly ash with high loss on ignition, Gospodarka Surowcami Mineralnymi, 30(2), 103-115.
  • Tekindal, M. A., Bayrak, H., Özkaya, B. ve Genç, Y., (2012). Box- Behnken Experimental Desıgn In Factorial Experiments: The Importance Of Bread For Nutrition And Health. Turkish Journal of Field Crops, 17(2):115-123.
  • Türker, P., Erdoğan, B., Katnaş, F., Yeğinobalı, A., (2009). Türkiye’deki Uçucu Küllerin Sınıflandırılması Ve Özellikleri, Türkiye Çimento Müstahsilleri Birliği, Ankara, 112 s.
  • Vasquez, A., Cardenas, V., Robayo, R. A., Gutierrez ve R. M., (2016). Geopolymer based on concrete demolition waste, Advanced Powder Technology, 27(4), 1173-1179.
  • Yeğinobalı, A., (1990). Possible Uses of Soda Industry Waste as a Construction Material, Z. Wasser-Abwasser-Forsch, 23, 132-135.
  • Yun-Ming, L., Cheng-Yong, H., Bakri, M. M. A. ve Hussin K., (2016). Structure and properties of clay-based geopolymer cements: A review, Progress in Materials Science, 83, 595-629.
  • Zhang, P., Zheng, Y., Wang, K. ve Zhang, J., (2018). A review on properties of fresh and hardened geopolymer mortar, Composites Part B: Engineering, 152, 79-95.