Bir Mikro Şebekenin Yük Frekans Kontrolü için Tamsayı Derece Yaklaşımlı Kesir Dereceli PID Kontrolörün Optimizasyonu

Modern güç sistemlerinde yük değişiklikleri ve arızalar sonrası üretim-yük dengesini koruma yeteneğini sağlamak önemli bir problemdir. Bir yük frekans kontrol (LFC) mekanizması bu gereksinime bir çözüm sağlar. Mikro şebekelerde üretilen güç miktarı sürekli olarak değişir ve aynı zamanda birçok belirsizliğe sahiptir, bunun nedeni mikro şebekelerin genellikle elektrik enerjisi üretmek için yenilenebilir enerji kaynakları (RES) kullanmasıdır. Mikro şebeke sistemlerindeki bu değişiklikler ve belirsizlikler nedeniyle, geleneksel kontrolörler uzun vadede iyi bir performans sağlamada yetersiz kalmıştır. Bu çalışmada, mikro şebekede, LFC karşılaşılan zorluklarla başa çıkmak için tamsayı derece yaklaşımlı kesir dereceli PID kontrolör (IOA FOPID) önerilmiştir. En uygun kontrolör parametrelerinin belirlenmesi için lig şampiyonası algoritması (LCA), karınca koloni optimizasyonu (ACO) ve optikten esinlenen optimizasyon (OIO) algoritmaları kullanılmıştır. Aynı zamanda, IOA FOPID kontrolörünün kazançlarının en uygun değerlerinin elde edilmesi için çok amaçlı bir maliyet fonksiyonu kullanılmıştır. Üç farklı optimizasyon algoritması ile elde edilen en uygun kontrolör parametre değerleri için mikro şebeke sistemin zaman domeni analizleri yapılmış ve algoritmaların başarıları karşılaştırılmıştır.

___

  • [1] S. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and active distribution networks. The Institution of Engineering and Technology, 2009.
  • [2] R. H. Lasseter et al., “CERTS microgrid laboratory test bed,” IEEE Trans. Power Deliv., vol. 26, no. 1, pp. 325–332, 2011.
  • [3] R. Lasseter et al., “The CERTS MicroGrid Concept,” California, 2002.
  • [4] H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, and Y. Mitani, “Intelligent frequency control in an AC microgrid: Online PSO-based fuzzy tuning approach,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1935–1944, 2012.
  • [5] B. Yıldırım and M. T. Gençoğlu, “Oscillatory stability and eigenvalue analysis of power system with microgrid,” Electr. Eng., 2018.
  • [6] M. Mordjaoui, S. Haddad, A. Medoued, and A. Laouafi, “Electric load forecasting by using dynamic neural network,” Int. J. Hydrogen Energy, vol. 42, no. 28, pp. 17655–17663, Jul. 2017.
  • [7] S. Elkawafi, A. Khalil, A. I. Elgaiyar, and J. Wang, “Delay-dependent stability of LFC in Microgrid with varying time delays,” in 2016 22nd International Conference on Automation and Computing (ICAC), 2016, pp. 354–359.
  • [8] P. C. Sahu, S. Mishra, R. C. Prusty, and S. Panda, “Improved-salp swarm optimized type-II fuzzy controller in load frequency control of multi area islanded AC microgrid,” Sustain. Energy, Grids Networks, vol. 16, pp. 380–392, Dec. 2018.
  • [9] A. Rezvani, M. Izadbakhsh, and M. Gandomkar, “Microgrid dynamic responses enhancement using artificial neural network-genetic algorithm for photovoltaic system and fuzzy controller for high wind speeds,” Int. J. Numer. Model. Electron. Networks, Devices Fields, vol. 29, no. 2, pp. 309–332, Mar. 2016.
  • [10] X. Zhang, D. Wang, T. Yu, Z. Xu, and Z. Fan, “Ensemble learning for optimal active power control of distributed energy resources and thermostatically controlled loads in an islanded microgrid,” Int. J. Hydrogen Energy, vol. 43, no. 49, pp. 22474–22486, Dec. 2018.
  • [11] T. Vigneysh and N. Kumarappan, “Autonomous operation and control of photovoltaic/solid oxide fuel cell/battery energy storage based microgrid using fuzzy logic controller,” Int. J. Hydrogen Energy, vol. 41, no. 3, pp. 1877–1891, Jan. 2016.
  • [12] F. Banis, D. Guericke, H. Madsen, and N. K. Poulsen, “Load–frequency control in microgrids using target-adjusted MPC,” IET Renew. Power Gener., vol. 14, no. 1, pp. 118–124, Jan. 2020.
  • [13] M. M. Özyetkin and N. Tan, “Integer order approximation of fractional order systems,” in Signal Processing and Communications Applications Conference (SIU) IEEE, 2010, pp. 949–952.
  • [14] A. Yüce, F. N. Deniz, and N. Tan, “A New Integer Order Approximation Table for Fractional Order Derivative Operators,” IFAC-PapersOnLine, 2017.
  • [15] B. M. Vinagre, I. Podlubny, A. Hernandez, and V. Feliu, “Some Approximations of Fractional Order Operators Used in Control Theory and Applications,” Fract. Calc. Appl. Anal., 2000.
  • [16] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequency-band complex noninteger differentiator: Characterization and synthesis,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 2000.
  • [17] K. Matsuda and H. Fujii, “H(infinity) optimized wave-absorbing control - Analytical and experimental results,” J. Guid. Control. Dyn., 2008.
  • [18] B. T. Krishna, “Studies on fractional order differentiators and integrators: A survey,” Signal Processing, 2011.
  • [19] Y. Q. Chen, I. Petráš, and D. Xue, “Fractional order control - A tutorial,” in Proceedings of the American Control Conference, 2009.
  • [20] G. E. Carlson and C. A. Halijak, “Approximation of Fractional Capacitors (1/s)1/n by a Regular Newton Process,” IEEE Trans. Circuit Theory, 1964.
  • [21] B. YILDIRIM, M. T. OZDEMIR, and I. EKE, “Design of Integer Order Approximation Fractional Order Controller with for Automatic Voltage Regulation System,” in 2019 4th International Conference on Power Electronics and their Applications (ICPEA), 2019, pp. 1–6.
  • [22] S. Obara, “Analysis of a fuel cell micro-grid with a small-scale wind turbine generator,” Int. J. Hydrogen Energy, vol. 32, no. 3, pp. 323–336, 2007.
  • [23] D. J. Lee and L. Wang, “Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part I: Time-domain simulations,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 311–320, 2008.
  • [24] B. T. Krishna and K. V. V. S. Reddy, “Active and passive realization of fractance device of order 1/2,” Act. Passiv. Electron. Components, 2008.
  • [25] M. T. Özdemir, B. Yıldırım, H. Gülan, and M. T. Gençoğlu, “Automatic generation control in an AC isolated microgrid using the league championship,” Sci. Eng. J Fırat Univ., vol. 29, pp. 109–120, 2017.
  • [26] O. Bozorg-Haddad, M. Solgi, and H. A. Loáiciga, Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization. 2017.
  • [27] A. Husseinzadeh Kashan, “League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships,” Appl. Soft Comput., vol. 16, pp. 171–200, Mar. 2014.
  • [28] H. Bingöl and B. Alataş, “Metasezgisel Optimizasyon Tekniklerine Spor Tabanlı Yeni Bir Yaklaşım: Lig Şampiyonası Algoritması,” Fırat Ünv. Fen Bilim. Derg., vol. 27, no. 1, pp. 1–11, 2015.
  • [29] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53–66, 1997.
  • [30] A. H. Kashan, “Computers & Operations Research A new metaheuristic for optimization : Optics inspired optimization ( OIO ),” vol. 55, pp. 99–125, 2015.
  • [31] M. T. Özdemir and D. Öztürk, “Comparative performance analysis of optimal PID parameters tuning based on the optics inspired optimization methods for automatic generation control,” Energies, vol. 10, no. 12, 2017.
  • [32] E. Kılıç and M. T. Özdemir, “Güç Sistemlerindeki Optimum Otomatik Gerilim Regülasyonu için Çoklu Amaç Fonksiyonunun Belirlenmesi,” DÜMF Mühendislik Derg., 2019.
  • [33] M. Zamani, M. Karimi-Ghartemani, N. Sadati, and M. Parniani, “Design of a fractional order PID controller for an AVR using particle swarm optimization,” Control Eng. Pract., 2009.